Self Studies

Binomial Theorem Test - 47

Result Self Studies

Binomial Theorem Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the coefficient of $$x^{11}$$ in the expansion of $$\left(x^{3}-\dfrac{2}{x^{2}}\right)^{12}$$
    Solution

  • Question 2
    1 / -0
    Coefficient of $$\alpha $$ in the expansion of $$(\alpha +p)^{m-1}+(\alpha +p)^{m-2}(\alpha +q)^{m-3}(\alpha +q)^{2}+....(\alpha +q)^{m-1}$$ where $$\alpha \neq -q$$ and $$p\neq q$$ is: 
    Solution

  • Question 3
    1 / -0
    If the $$r^{th}$$ and the $$(r+1)^{th}$$ terms in the expansion of $$(p+q)^{n}$$ are equal, then $$\dfrac{(n+1)q}{r(p+q)}$$ is
    Solution

  • Question 4
    1 / -0
    Number of distinct terms in the expansion of $$(x+y-z)^{16}$$ is 
    Solution

  • Question 5
    1 / -0
    The number of terms in the expansion of $$(1+x)^{101}(1+x^{2}-x)^{100}$$ in power of $$x$$ is:
  • Question 6
    1 / -0
    In the expansion of $$(1+x)^{30}$$, the sum of the coefficients of odd powers of $$x$$, is
    Solution

  • Question 7
    1 / -0
    The coefficient of $$x^{10}$$ in the expansion of $$(1+x)^{2}(1+x^{2})^{3}(1+x^{3})^{4}$$ is qual to:
    Solution
    We know,
    $$(a+b)^2=a^2+b^2+2ab$$
    $$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
    $$(a + b)^4 = a^4 +4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

    $$(1+x)^2(1+x^2)^3(1+x^3)^4$$
    $$\Rightarrow$$  $$(1+x^2+2x)(1+3x^2+3x^4+x^6)(1+4x^3+6x^6+4x^9+x^{12})$$
    $$\Rightarrow$$  $$(1+3x^2+3x^4+x^6+x^2+3x^4+3x^6+x^8+2x+6x^3+6x^5+2x^7)(1+4x^3+6x^6+4x^9+x^{12})$$
    $$\Rightarrow$$  $$(1+2x+4x^2+6x^4+6x^5+4x^6+2x^7+x^8)(1+4x^3+6x^6+4x^9+x^{12})$$
    Now, coefficient of $$x^{10}$$ $$=(4\times 2)+(6\times 6)+(2\times 4)$$
                                        $$=8+36+8$$
                                        $$=52$$

  • Question 8
    1 / -0
    The coefficient of $$x^{n}$$ in the expansion of $$\dfrac{1}{(1-x)(1-2x)(1-3x)}$$ is 
    Solution
    We have
    $$\dfrac{1}{{\left( {1 - x} \right)\left( {1 - 2x} \right)\left( {1 - 3x} \right)}}$$
    $$ = \dfrac{1}{{2\left( {1 - x} \right)}} - \dfrac{4}{{1 - 2x}} + \dfrac{9}{{2\left( {1 - 3x} \right)}}$$
    $$ = \dfrac{1}{2}{\left( {1 - x} \right)^{ - 1}} - 4{\left( {1 - 2x} \right)^{ - 1}} + \dfrac{9}{2}{\left( {1 - 3x} \right)^{ - 1}}$$
    $$ = \dfrac{1}{2}\left( {1 + x + {x^2} + ..... + {x^n}} \right) - 4\left( {1 + 2x + {{\left( {2x} \right)}^2} + ..... + {{\left( {2x} \right)}^n}} \right) + \dfrac{9}{2}\left( {1 + 3x + {{\left( {3x} \right)}^2} + .... + {{\left( {3x} \right)}^n}} \right)$$

    Coefficient of $${x^n}$$, we get
    $$= \dfrac{1}{2}\left[ {1 - {{8.2}^n} + {{9.3}^n}} \right]$$
    $$ = \dfrac{1}{2}\left[ {1 - {2^{n + 3}} + {3^{n + 2}}} \right]$$
    $$ = \dfrac{1}{2}\left[ {3^{n+2} - 2^{n + 3}+1} \right]$$

    Hence, the option $$(B)$$ is correct answer.
  • Question 9
    1 / -0
    If  the $$6^{th}$$ term in the expansion of $$\left(\dfrac {1}{x^{8/3}}+x^{2}\log ^{x}_{10}\right)^{8}$$ is $$5600$$, then equals
  • Question 10
    1 / -0
    In the expansion of $$(1+2x+3x^{2})^{10},$$ coefficient of $$x^{4}$$ is not divisible by
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now