Self Studies

Binomial Theorem Test - 49

Result Self Studies

Binomial Theorem Test - 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the coefficients of $$2^{nd}, 3^{rd},$$ and $$4^{th}$$ terms in the expansion of $${(1 + x)^n},n \in N$$ are in A.P.,then $$n=$$
    Solution

  • Question 2
    1 / -0
    The coefficient of $${ x }^{ n }$$ in $$(1-x+\frac { { x }^{ 2 } }{ 2! } -\frac { { x }^{ 3 } }{ 3! } +.....+\frac { { (-1) }^{ n }{ x }^{ n } }{ n! } )^{ 2 }$$ is 
    Solution

  • Question 3
    1 / -0
    The middle term in the expansion of $$\left(\dfrac{2}{3}x-\dfrac{3}{2}y\right)^{20}$$ is 
    Solution
    $$\left(\frac{2 }{3} x-\frac{3}{2} y\right)^{20}\\$$
    $$\text { There will be total } 21 \text { terms in this exapnsion } \\$$
    $$\text { : : } 11 \text { th term will be middle tem. }$$

    $$T_{r+1=}{}^n C_{r} \cdot x^{n-r} \cdot y^{r}$$

    $$\Rightarrow T_{11}={ }^{20} c_{10} \cdot\left(\frac{2}{3} x\right)^{20-10}\left(\frac{-3}{2} y\right)^{10}$$

    $$={}^{20} {c_{10}} x^{10} \cdot y^{10}$$

    option (a)
  • Question 4
    1 / -0
    The coefficient of $$x^8$$ in the expansion of $$(1+x+x^3+x^5+x^9)(1+x^2)^5(1_x^4)^6$$ is equal to
  • Question 5
    1 / -0
    If coefficient of $$2^{nd}, 3^{rd}$$ and $$4^{th}$$ term in the expansion of $$\left(1+x\right)^{2n}$$ are in A.P. then :
    Solution
    $$^{2n}C_{1},^{2n}C_{2}, ^{2n}C_{3}$$ are in A.P
    $$\therefore 2\times ^{2n}C_{2}= ^{2n}C_{1}+^{2n}C_{3}$$
    $$=2\times (\frac{2n(2n-1)}{1\times 2})=\frac{2n}{1}+\frac{2n(2n-1)(2n-2)}{1\times 2\times 3}$$
    $$=2n-1=1+\frac{(2n-1)(n-1)}{3}$$
    $$= 6n-3=3n+2n^{2}-3n+1$$
    $$\Rightarrow 2n^{2}-9n+7=0$$

  • Question 6
    1 / -0
    The coefficient of $$a^3b^4c$$ in the expansion of $$(1+a+b-c)^9$$ is
    Solution

  • Question 7
    1 / -0
    If the fourth term in the expansion of $$\left(px+\dfrac{1}{x}\right)^{n}$$ is independent of $$x$$, then the value of term is :
  • Question 8
    1 / -0
    If in the expansion of $$\left(2^{1/3}+\dfrac {1}{3^{1/3}}\right)^{n}$$, the ratio of $$6^{th}$$ term from beginning and from the end is $$1/6$$, then the value of $$n$$ is
    Solution
    As we know that in an expansion $${\left( a + b \right)}^{n}$$, the general term is given as-
    $${T}_{r + 1} = {^{n}{C}_{r}} {a}^{n} {b}^{n-r}$$
    In the given expansion-
    $${\left( {2}^{{1}/{3}} + \cfrac{1}{{3}^{{1}/{3}}} \right)}^{n}$$
    $$a = {2}^{{1}/{3}}, \quad b = \cfrac{1}{{3}^{{1}/{3}}}, \quad n = ?$$
    Therefore,
    $$\Rightarrow \cfrac{{^{n}{C}_{5}} {\left( {2}^{{1}/{3}} \right)}^{5} {\left( \cfrac{1}{{3}^{{1}/{3}}} \right)}^{n-5}}{{^{n}{C}_{n-5}} {\left( {2}^{{1}/{3}} \right)}^{n-5} {\left( \cfrac{1}{{3}^{{1}/{3}}} \right)}^{5}} = \cfrac{1}{6} \quad \left( \text{Given} \right)$$
    $$\Rightarrow \cfrac{1}{{\left( {2}^{{1}/{3}} \right)}^{n-10} {\left( {3}^{{1}/{3}} \right)}^{n-10}} = \cfrac{1}{6}$$
    $$\Rightarrow \cfrac{1}{{\left( 6 \right)}^{\frac{n-10}{3}}} = \cfrac{1}{{\left( 6 \right)}^{1}}$$
    $$\Rightarrow \cfrac{n - 10}{3} = 1$$
    $$\Rightarrow n - 10 = 3$$
    $$\Rightarrow n = 10 + 3 = 13$$
  • Question 9
    1 / -0
    Find the number of terms in expansion of $$(1+x)^{2}+(1-x)^{8}$$
    Solution

  • Question 10
    1 / -0
    Middle term in the expansion of $$(1+3x+3x^2+x^3)^6$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now