Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    The number of integral terms in the expansion of $$ (\sqrt{3}+\sqrt[8]{5})^{256}  $$ is

  • Question 2
    1 / -0

    For a binomial distribution, n = 5.
    If P (X = 4) = P (X = 3), then P (X > 2) is 

  • Question 3
    1 / -0

    The coefficient of $$t^{50}$$ in $$(1+t)^{41}(1-t+t^2)^{40}$$ is equal to?

  • Question 4
    1 / -0

    The coefficient of $$x^{8}$$ in the polynomial $$\left(x-1\right)\left(x-2\right)\left(x-3\right).\left(x-10\right)$$ is:

  • Question 5
    1 / -0

    Find the middle term in the expansion of $$(1-2x+x^2)^n$$

  • Question 6
    1 / -0

    If $$\left(1+x+x^ {2}+x^ {3}\right)^ {5}=a_{0}+a_{1}x+a_{2}x^ {2}+....+a_{15}x^ {15}$$, then $$a_{10}$$ equals

  • Question 7
    1 / -0

    The largest coefficient in the expansion of $${ \left( 1+x \right)  }^{ 38 }$$ is

  • Question 8
    1 / -0

    Given that the term of the expansion $$\displaystyle (x^{1/3}+  x^{-1/2})^{15}$$  which does not contain $$x$$ is $$5$$ m , where m$$\in$$N , m $$=$$

  • Question 9
    1 / -0

    If the $$6^{th}$$ term in the expansion of $$\displaystyle \left [ \dfrac{1}{x^{8/3}} + x^2log_{10}x \right ]^8$$ is 5600 , then $$x$$ = 

  • Question 10
    1 / -0

    If the second term of the expansion $${ [{ a }^{ { 1 }/{ 13 } }+\frac { a }{ \sqrt { { a }^{ -1 } }  } ] }^{ n }$$ is $$14{ a }^{ { 5 }/{ 2 } }$$, then the value of $$\frac { ^{ n }{ C }_{ 3 } }{^{ n } { C }_{ 2 } } $$ is .

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now