Self Studies

Binomial Theorem Test - 53

Result Self Studies

Binomial Theorem Test - 53
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the middle terms in the expansion of $$\left(x^2+\dfrac{1}{x}\right)^{2n}$$ is $$184756x^{10}$$, then what is the value of $$n$$ ? 
    Solution
    Given,

    $$\left ( x^2+\dfrac{1}{x} \right )^{2n}$$

    $$2n$$ is even

    $$r=\dfrac{2n}{2} =n$$

    $$MT=^{2n}C_n(x^2)^{2n-n}\left ( \dfrac{1}{x} \right )^n$$

    $$=^{2n}C_n(x^2)^n(x)^{-n}$$

    $$=^{2n}C_n(x)^{2n-n}$$

    $$=^{2n}C_nx^n$$

    $$\therefore 184756x^{10}=^{2n}C_nx^n$$

    $$\Rightarrow x^{10}=x^n$$

    $$\therefore n=10$$
  • Question 2
    1 / -0
    If the sum of the coefficients in the expansions of $$(a^2 x^2 - 2ax + 1)^{51}$$ is zero, then $$a$$ is equal to 
    Solution
    $$(a^2 x^2 - 2ax + 1)^{51}$$
    For sum of coefficients put $$x = 1$$
    $$(a^2 - 2a + 1)^{51} = 0$$
    $$\Rightarrow \{(a - 1)^2 \}^{51} = 0$$
    $$\Rightarrow a = 1$$
  • Question 3
    1 / -0
    $$\dfrac{1}{9!} + \dfrac{1}{3! 7!} + \dfrac{1}{5! 5!} + \dfrac{1}{7! 3!} + \dfrac{1}{9!}$$ is equal to 
    Solution

    $$\dfrac{1}{9!} + \dfrac{1}{3! 7!} + \dfrac{1}{5! 7!} + \dfrac{1}{7! 3!} + \dfrac{1}{9!}$$

    $$=\dfrac{1}{10!}\left[\dfrac{10}{9!1!} + \dfrac{10}{3! 7!} + \dfrac{10}{5! 7!} + \dfrac{10}{7! 3!} + \dfrac{10}{9!1!}\right]$$

    $$=\dfrac{1}{10!}[^{10}C_1+\,^{10}C_3+\,^{10}C_5+\,^{10}C_7+\,^{10}C_9]$$
    $$=\dfrac{1}{10!}.2^9=\dfrac{2^9}{10!}$$
  • Question 4
    1 / -0
    The coefficient of $$x^4$$ in the expansion of $$(1-2x)^5$$ is equal to  
    Solution
    General term of $$(1 - 2x)^5$$ is given by

    $$T_{r+1} = \, ^5C_r(-2x)^r$$
    $$= \, ^5C_r(-2)^r x^r$$

    For coefficient of $$x^4$$, power of $$x = 4$$ 

    $$\therefore r = 4$$
    $$\therefore$$ Coefficient pf $$x^4 = \, ^5C_4(-2)^4$$

    $$= 5\times 16 = 80$$
  • Question 5
    1 / -0
    Sum of last $$30$$ coefficents in the binomial expansion of $$(1 + x)^{59}$$ is 
    Solution
    We have, $$(1 + x)^{59}$$
    Sum of last $$30$$ coefficient of the binomial expansion
    $$=\ ^{59} C_{30} + \ ^{59} C_{31} + .... + \ ^{59}C_{59}$$
    We know that,
    $$^{59} C_0 + \ ^{59}C_1 + \ ^{59}C_2 + .... + \ ^{59} C_{59} = 2^{59}$$
    $$\Rightarrow (^{59}C_0 +\ ^{59}C_{59}) + (^{59} C_1 +\ ^{59}C_{58}) + ..... + (^{59} C_{29} + \ ^{59}C_{30}) = 2^{59}$$
    $$\Rightarrow 2 (^{59} C_{59} + \ ^{59}C_{58} + .... + \ ^{59}C_{31} + \ ^{59}C_{30}) = 2^{59}$$    $$[\because \ ^nC_r = \ ^nC_{n - r}]$$
    $$\Rightarrow \ ^{59} C_{30} +\ ^{59} C_{31} + .... \ ^{59} C_{39} = \dfrac{2^{59}}{2} = 2^{58}$$
    $$\therefore $$ Sum of last $$30$$ coefficient of the binomial expansion $$(1 + x)^{59} $$ is $$2^{58}$$.
  • Question 6
    1 / -0
    $$(^7C_0 + \ ^7C_1) + (^7 C_2 + \ ^7C_3) + .... + (^7C_6 + \ ^7 C_7) = $$
    Solution
    $$(^7C_0+^7C_1)+(^7C_2+^7C_3)+------+(^7C_6+^7C_7)$$
    $$=^7C_0+\,^7C_1+----+\,^7C_7$$
    $$=2^7[\because C_0+C_1+C_2+----+C_n=2^n]$$
  • Question 7
    1 / -0
    The arithmetic mean of $$^nC_0 , \ ^nC_1, \ ^nC_2 ...., \ ^nC_n$$ is 
    Solution
    $$\because (1 + x)^n = \ ^nC_0 + \ ^nC_1 x + \ ^nC_2 . x^2 + ... + \ ^nC_n . x^n$$
    Take $$x = 1$$
    $$(1 + 1)^n = \ ^nC_0 + \ ^nC_1 . (1) + \ ^nC_2 . (1)^2 + ... + \ ^nC_0 . (1)^n$$
    $$2^n = \ ^nC_0 + \ ^nC_1 + \ ^n C_2 + ... + \ ^nC_n$$
    Now arithmetic mean
    $$\bar{X} = \dfrac{\displaystyle \sum_{i = 1}^n x_i}{N} $$, where $$N = (n + 1)$$
    $$\Rightarrow \bar{X} = \dfrac{^nC_0 + \ ^nC_1 + \ ^n C_2 + .... + \ ^nC_n}{n + 1}$$
    $$\Rightarrow \bar{X} = \dfrac{2^n}{n+ 1}$$
  • Question 8
    1 / -0
    The largest term in the expansion of $$(2 + 3x)^{25}$$ where x = 2 is its
    Solution

  • Question 9
    1 / -0
    In the expansion of $$(1 + x)^{43}$$, the coefficients of the (2r+1)th and the (r + 2)th terms are equal, then the value of r, is
    Solution

  • Question 10
    1 / -0
    The total number of terms in the expansion of $$(x + a)^{100} + (x - a)^{100}$$ after simplification,
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now