$$\dfrac { { c }_{ 0 } }{ x } -\dfrac { { c }_{ 1 } }{ x+1 } +\dfrac { { c }_{ 2 } }{ x+2 } -............\quad \quad +{ \left( -1 \right) }^{ n }\dfrac { { c }_{ n } }{ x+n } $$
$${ \left( 1-y \right) }^{ n }={ c }_{ 0 }{ - }{ c }_{ 1 }y+{ c }_{ 2 }{ y }^{ 2 }- ......+{ c }_{ n }{ y }^{ n }$$
$${ y }^{ x-1 }{ \left( 1-y \right) }^{ n }={ c }_{ 0 }{ y }^{ x-1 }-{ c }_{ 1 }{ y }^{ x }+{ c }_{ 2 }{ y }^{ x+1 }-......$$
$$\displaystyle \int _{ 0 }^{ 1 }{ { y }^{ x-1 } } { \left( 1-y \right) }^{ n }dy=\int _{ 0 }^{ 1 }{ { c }_{ 0 }{ y }^{ x-1 } } dy-\int _{ 0 }^{ 1 }{ { c }_{ 1 }{ y }^{ x }dy } +..........$$
$$\Rightarrow \displaystyle \int _{ 0 }^{ 1 }{ { y }^{ x-1 } } { \left( 1-y \right) }^{ n }dy=\dfrac { { c }_{ 0 } }{ x } -\dfrac { { c }_{ 1 } }{ x+1 } +.......+{ \left( -1 \right) }^{ n }\dfrac { { c }_{ n } }{ x+n } $$
We have to calculate the the value of integration in order to find the required value of RHS.
$$\displaystyle \int _{ 0 }^{ 1 }{ \dfrac { { y }^{ x-1 } }{ 1 } } { \left( 1-y \right) }^{ n } dy$$ ...... (using by parts)
$$ =\displaystyle { \left[ \dfrac { { y }^{ x } }{ x } { \left( 1-y \right) }^{ n } \right] }_{ 0 }+n\int _{ 0 }^{ 1 }{ \dfrac { { y }^{ x } }{ x } { \left( 1-y \right) }^{ n-1 } } dy$$
$$ =\displaystyle 0+\dfrac { n }{ x } \int _{ 0 }^{ 1 }{{ y }^{ x } { \left( 1-y \right) }^{ n-1 } } dy$$
Again by using by parts:-
$$=\displaystyle \dfrac { n }{ x } \cdot { \left[ \dfrac { { y }^{ x+1 } }{ x+1 } \cdot { \left( 1-y \right) }^{ n-1 } \right] }_{ 0 }+\int _{ 0 }^{ 1 }{ \left( n-1 \right) { \left( 1-y \right) }^{ n-2 }\dfrac { { y }^{ x+1 } }{ x+1 } } $$
$$=\displaystyle \dfrac { n }{ x } \cdot \left[ 0+\dfrac { n-1 }{ x+1 } \int _{ 0 }^{ 1 }{ { y }^{ x+1 }{ \left( 1-y \right) }^{ n-2 } } dy \right] $$
$$=\displaystyle \dfrac { n\left( n-1 \right) }{ x\left( x+1 \right) } \int _{ 0 }^{ 1 }{ { y }^{ x+1 } } { \left( 1-y \right) }^{ n-2 }dy$$
This integration by parts will go untill $${ \left( 1-y \right) }^{ n-2 }$$becomes$$ { \left( 1-y \right) }^{ 0 }$$i.e. 1 and then the integration will stop.
So, final integration will be
$$\displaystyle \int _{ 0 }^{ 1 }{ { y }^{ x+n-1 } } dy = \dfrac { { y }^{ x+n } }{ x+n } =\dfrac { 1 }{ x+n } $$
Thus, $$\displaystyle \int_{0}^{1} y^{x-1} (1-y)^{n} = \dfrac { n\left( n-1 \right) \left( n-2 \right) .....1 }{ x\left( x+1 \right) \left( x+2 \right) ....\left( x+n \right) } =\dfrac { n! }{ x\left( x+1 \right) ...\left( x+n \right) } $$
Hence, the correct option is C.