Self Studies

Binomial Theorem Test - 56

Result Self Studies

Binomial Theorem Test - 56
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the expansion of $$(5^{\tfrac 12} + 2^{\tfrac 18})^{1024}$$, the number of integral terms is
    Solution
    $$ \displaystyle T_{r+1} = ^{1024}C_r\times 5^{\tfrac r2 }\times2^{\tfrac {(1024-r)}8}$$
    For $$T_{r+1}$$ to be integral, the powers of $$5$$ and $$2$$ must be integers.
    Hence,
    $$\displaystyle\frac {r}{2} = a $$ and $$\displaystyle\frac{1024-r}{8} = b $$, where $$a$$ and $$b$$ are integers. 
    Hence, $$r$$ must be a factor of $$8$$. 
    $$r$$ can assume values from $$0$$ to $$1024$$ which are factors of $$8$$.
     Hence, the total number of values $$r$$ can acquire is $$1 + \displaystyle\frac{1024}{8} = 129$$.
  • Question 2
    1 / -0
    if the coefficient of the middle term in the expansion of$$\displaystyle (1+x)^{2n+2}$$and $$p$$ and the coefficients of middle terms in the expansion of$$\left ( 1+x \right )^{2n+1}$$are $$q$$ and $$r$$,then
    Solution

    $$(1+x)^{2n+2}$$.
    The middle term will be $$(\dfrac {N}{2}+1)$$ th term.
    $$=\dfrac {2n+2}{2}+1$$ th term
    $$=(n+2)^{th}$$ term
    Hence coefficient of the middle term will be
    $$\:^{2n+2}C_{n+1}$$
    $$=p$$
    For 
    $$(1+x)^{2n+1}$$.
    The middle terms will be $$(\dfrac {N+1}{2}+1)$$ and  $$(\dfrac {N+1}{2})$$ terms
    $$=\dfrac {2n+2}{2}+1$$ th term and $$\dfrac {2n+2}{2}^{th}$$ term.
    $$=(n+2)^{th}$$ term and $$(n+1)^{th}$$ term.
    Hence coefficient of the middle terms will be
    $$\:^{2n+1}C_{n+1}=q$$ and $$\:^{2n+1}C_{n}=r$$
    By the properties of binomial coefficients.
    $$\:^{2n+1}C_{n+1}+\:^{2n+1}C_{n}$$
    $$=\:^{2n+2}C_{n+1}$$
    Hence $$q+r=p$$

  • Question 3
    1 / -0
    If the $$(n+1)$$ numbers $$a,b,c,d,...$$ be all different and each of them a prime number, then the number of different factors (other than 1) of $$a^m.b.c.d....$$ is
    Solution
    No. of elements in $$b.c.d...  = n$$
    Choose $$a^k$$, where k$$ \in {0,1,2, ..m}$$ at a time =$$(m+1) $$
    for every $$k$$, no. possible factors from n elements = $$ ^nC_0+^nC_1+^nC_2+ . . . . . + ^nC_n$$
    $$ = 2^n$$
    Total factors $$ =$$ No. of possible powers of $$a\times$$ every $$k$$, no. possible factors from $$n$$ elements 
    $$= (m+1)2^n$$
    If factor $$1$$ is excluded then
    $$(m+1)2^n-1$$
  • Question 4
    1 / -0
    The total number of terms which are dependent on the value of $$x$$ in the expansion of $$\left(x^2 - 2 + \displaystyle\frac{1}{x^2}\right)^n$$ is equal to   
    Solution
    $$(x^2-2+\dfrac{1}{x^2})^{n}$$
    $$=((x-\dfrac{1}{x})^2)^{n}$$
    $$=(x-\dfrac{1}{x})^{2n}$$
    $$T_{r+1}=\:{10}C_{r}x^{2n-2r}$$
    For term independent of $$x$$
    $$2n-2r=0$$
    $$n=r$$
    Hence there will be $$1$$ term independent of $$x$$.
    Since the total number of terms are $$2n+1$$.
    Hence the total number of term dependent on $$x$$ will be
    Total number of terms-(total number of terms independent of $$x$$).
    $$=2n+1-1$$
    $$=2n$$
  • Question 5
    1 / -0
    $$\cfrac { { C }_{ 0 } }{ x } -\cfrac { { C }_{ 1 } }{ x+1 } +\cfrac { { C }_{ 2 } }{ x+2 } -......+{ \left( -1 \right)  }^{ n }\cfrac { { C }_{ n } }{ x+n } =$$_______ where $${ C }_{ r }$$ stands for $${ _{  }^{ n }{ C } }_{ r }$$.
    Solution
    $$\dfrac { { c }_{ 0 } }{ x } -\dfrac { { c }_{ 1 } }{ x+1 } +\dfrac { { c }_{ 2 } }{ x+2 } -............\quad \quad +{ \left( -1 \right)  }^{ n }\dfrac { { c }_{ n } }{ x+n } $$
     $${ \left( 1-y \right)  }^{ n }={ c }_{ 0 }{ - }{ c }_{ 1 }y+{ c }_{ 2 }{ y }^{ 2 }- ......+{ c }_{ n }{ y }^{ n }$$
    $${ y }^{ x-1 }{ \left( 1-y \right)  }^{ n }={ c }_{ 0 }{ y }^{ x-1 }-{ c }_{ 1 }{ y }^{ x }+{ c }_{ 2 }{ y }^{ x+1 }-......$$
    $$\displaystyle \int _{ 0 }^{ 1 }{ { y }^{ x-1 } } { \left( 1-y \right)  }^{ n }dy=\int _{ 0 }^{ 1 }{ { c }_{ 0 }{ y }^{ x-1 } } dy-\int _{ 0 }^{ 1 }{ { c }_{ 1 }{ y }^{ x }dy } +..........$$
    $$\Rightarrow \displaystyle \int _{ 0 }^{ 1 }{ { y }^{ x-1 } } { \left( 1-y \right)  }^{ n }dy=\dfrac { { c }_{ 0 } }{ x } -\dfrac { { c }_{ 1 } }{ x+1 } +.......+{ \left( -1 \right)  }^{ n }\dfrac { { c }_{ n } }{ x+n } $$ 
    We have to calculate the the value of integration in order to find the required value of RHS. 
    $$\displaystyle \int _{ 0 }^{ 1 }{ \dfrac { { y }^{ x-1 } }{ 1 }  } { \left( 1-y \right)  }^{ n }  dy$$ ...... (using by parts)
    $$ =\displaystyle { \left[ \dfrac { { y }^{ x } }{ x } { \left( 1-y \right)  }^{ n } \right]  }_{ 0 }+n\int _{ 0 }^{ 1 }{ \dfrac { { y }^{ x } }{ x } { \left( 1-y \right)  }^{ n-1 } } dy$$ 
    $$ =\displaystyle  0+\dfrac { n }{ x } \int _{ 0 }^{ 1 }{{ y }^{ x }  { \left( 1-y \right)  }^{ n-1 } } dy$$
    Again by using by parts:- 
    $$=\displaystyle \dfrac { n }{ x } \cdot { \left[ \dfrac { { y }^{ x+1 } }{ x+1 } \cdot { \left( 1-y \right)  }^{ n-1 } \right]  }_{ 0 }+\int _{ 0 }^{ 1 }{ \left( n-1 \right) { \left( 1-y \right)  }^{ n-2 }\dfrac { { y }^{ x+1 } }{ x+1 }  } $$ 
    $$=\displaystyle \dfrac { n }{ x } \cdot \left[ 0+\dfrac { n-1 }{ x+1 } \int _{ 0 }^{ 1 }{ { y }^{ x+1 }{ \left( 1-y \right)  }^{ n-2 } } dy \right] $$ 
    $$=\displaystyle \dfrac { n\left( n-1 \right)  }{ x\left( x+1 \right)  } \int _{ 0 }^{ 1 }{ { y }^{ x+1 } } { \left( 1-y \right)  }^{ n-2 }dy$$ 
    This integration by parts will go untill  $${ \left( 1-y \right)  }^{ n-2 }$$becomes$$ { \left( 1-y \right)  }^{ 0 }$$i.e. 1 and then the integration will stop.
    So, final integration will be
    $$\displaystyle \int _{ 0 }^{ 1 }{ { y }^{ x+n-1 } } dy = \dfrac { { y }^{ x+n } }{ x+n } =\dfrac { 1 }{ x+n } $$ 
    Thus, $$\displaystyle \int_{0}^{1} y^{x-1} (1-y)^{n} = \dfrac { n\left( n-1 \right) \left( n-2 \right) .....1 }{ x\left( x+1 \right) \left( x+2 \right) ....\left( x+n \right)  } =\dfrac { n! }{ x\left( x+1 \right) ...\left( x+n \right)  } $$
    Hence, the correct option is C.
  • Question 6
    1 / -0
    If $$c_{0},c_{1},c_{2}\cdots c_{n}$$ are binomial coefficients in $$\left ( 1+x \right )^{n}$$, then the value of $$c_{1} + c_{5} + c_{9}+c_{13}+\cdots $$ equals
    Solution
    $$c_{0},c_{1},c_{2}\cdots c_{n}$$ are binomial coefficients of $$\left ( 1+x \right )^{n}$$
    i.e $$\left ( 1+x \right )^{n} = c_{0}+c_{1}x+c_{2}x^{2}+c_{3}x^{3}+\dots $$
    put $$x=i$$
    $$\Rightarrow \left ( 1+i \right )^{n} = c_{0}+c_{1}i-c_{2}-c_{3}i+\dots $$
    $$\Rightarrow \displaystyle 2^{\frac{n}{2}}c$$ is $${\displaystyle \frac{n\pi}{4}} = c_{0}+c_{1}i-c_{2}-c_{3}i+\dots $$
    Comparing imaginary parts gives
    $$\displaystyle 2^{\frac{n}{2}}\sin {\dfrac{n\pi}{4}} = c_{1}-c_{3}+c_{5}+\dots $$ ------(1)
    $$2^{n-1} = c_{1}+c_{3}+c_{5}+\dots $$  ------(2)       ($$\because\quad c_{0}+c_{1}+c_{2}+\dots = 2^{n}$$)
    $$\therefore$$ (1)+(2) gives
    $$c_{1}+c_{5}+c_{9}+\dots = \displaystyle\frac{1}{2}\left(2^{n-1}+\displaystyle 2^{\frac{n}{2}}\sin {\dfrac{n\pi}{4}}\right)$$
  • Question 7
    1 / -0
    The expresion
    $$^{45}C_{8}$$+$$\sum _{ k=1 }^{ 7 }{^{ 52-k} C_{ 7 }} $$+$$\sum _{ i=1 }^{ 5 }{^{ 57-i} C_{ 50-i }} $$
    Solution
    $$^{45}C_{8}$$+$$\sum _{ k=1 }^{ 7 }{^{ 52-k} C_{ 7 }} $$+$$\sum _{ i=1 }^{ 5 }{^{ 57-i} C_{ 50-i }} $$
    $$\Rightarrow $$$$^{45}C_{8}$$+$$^{45}C_{7}$$+$$^{46}C_{7}$$+......+$$^{51}C_{7}$$+$$\sum _{ i=1 }^{ 5 }{^{ 57-i} C_{ 57-i-(50-i) }} $$
    $$\Rightarrow $$($$^{45}C_{8}$$+$$^{45}C_{7}$$)+$$^{46}C_{7}$$+......+$$^{51}C_{7}$$+$$\sum _{ i=1 }^{ 5 }{^{ 57-i} C_{ 7) }} $$
    $$\Rightarrow $$($$^{46}C_{8}$$+$$^{46}C_{7}$$)+......+$$^{51}C_{7}$$+$$^{52}C_{7}$$+$$^{53}C_{7}$$+........+$$^{56}C_{7}$$
    :
    :
    $$\Rightarrow$$ $$^{56}C_{8}$$+$$^{56}C_{7}$$
    $$\Rightarrow$$ $$^{57}C_{8}$$
  • Question 8
    1 / -0
    The coefficient of $$x^{15}$$ in the product
    $$\left ( 1-x \right )\left ( 1-2x \right )\left ( 1-2^{2}.x \right )\left ( 1-2^{3}.x \right )...\left ( 1-2^{15}.x \right )$$
    is equal to
    Solution
    Coefficient of $${ x }^{ 15 }$$ in given expression is given by

    Multiply all $$x$$ terms with $$1$$, we get $${ -2 }^{ 120 }$$, next multiply with $$-x$$ leaving the term with $$-2x, 2^{ 2 }x, { 2 }^{ 3 }x$$ respectively so 

    on, till $${ 2 }^{ 15 }x$$.

     We get, 
    $${ -2 }^{ 120 }{ -2 }^{ 119 }{ -2 }^{ 118 }{ ...........-{ 2 }^{ 105 } }$$ 

    Sum of all such terms will be $$-2^{120} \left({\dfrac{1}{2^0}+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{15}}} \right)$$

    $$=-{ 2 }^{ 105 }({ 2 }^{ 15 }+{ 2 }^{ 14 }+......+1)\\ =-{ 2 }^{ 105 }(\dfrac { 1-{ 2 }^{ 16 } }{ 1-2 } )\\ ={ 2 }^{ 105 }(1-{ 2 }^{ 16 })\\ ={ 2 }^{ 105 }-{ 2 }^{ 121 }$$
  • Question 9
    1 / -0
    The coefficient of $$x^{n-2}$$ in the polynomial $$(x-1)(x-2)(x-3)....(x-n)$$ is 
    Solution

    There are total of $$n$$ brackets. The term $$x^{n-2}$$ will be formed when integers are chosen from any two brackets and $$x$$ is chosen from all the other brackets and multiplied.


    Thus, the Coefficient of $$x^{n-2}$$ is 


    $$ C= (1\times2+1\times3+...+1\times n)+(2\times3+2\times4+..+2\times n)+...+((n-1)\times n)$$


    $$ = \left(\dfrac {(n)(n+1)}{2}-1\right)+2\left(\dfrac {(n)(n+1)}{2}-1-2\right)+...+(n-1)\left(\dfrac {(n)(n+1)}{2}-(1+2+3+..+(n-1))\right) $$


    $$ = \left\{(1+2+3+...+(n-1))(\dfrac {(n)(n+1)}{2})\right\} - \left\{ 1+2(1+2)+3(1+2+3)+...+(n-1)(1+...+n-1)\right\}$$


    $$ = \left\{(\dfrac {(n-1)(n)}{2})(\dfrac {(n)(n+1)}{2})\right\} - \left\{\sum_{1}^{n-1} k(\dfrac {(k)(k+1)}{2})\right\}$$


    $$= \left\{ \dfrac {n^{2}(n^{2}-1)}{4}\right\} - \left\{ \sum_{1}^{n-1} \dfrac {k^{3}+k^{2}}{2} \right\} $$


    $$ = \left\{ \dfrac {n^{2}(n^{2}-1)}{4}\right\} - \dfrac {1}{2}\left\{ (\dfrac {(n-1)(n)}{2})^{2} + \dfrac {(n-1)n(2n-1)}{6} \right\} $$

    $$ = \dfrac {n(n-1)}{4} \left\{ {n(n+1)} -  \dfrac {n(n-1)}{2} - \dfrac {2n-1}{3} \right\} $$


    $$ = \dfrac {n(n-1)}{4}\left\{ \dfrac {n(n+3)}{2} -\dfrac {2n-1}{3} \right\} $$


    $$ = \dfrac {n(n-1)}{4}\left\{ \dfrac {3n^{2}+9n-4n+2}{6} \right\} $$


    $$ = \dfrac {n(n-1)}{4}\left\{ \dfrac {(3n+2)(n+1)}{6} \right\} $$

    $$ \therefore $$ Option $$B$$ is correct.

  • Question 10
    1 / -0
    If $$C_{0},C_{1},C_{2}....,C_{n}$$ denote the binomial coefficients in the expansion of $$\left ( 1+x \right )^{n}$$, then $$\cfrac{C1}{C0}+2\cfrac{C2}{C1}++3\cfrac{C3}{C2}+.....+n\cfrac{Cn}{Cn-1}$$ equals
    Solution
    Writing the general term, we get 
    $$T_{r}=r.\dfrac{\:^{n}C_{r}}{\:^{n}C_{r-1}}$$
    $$=r.\dfrac{\dfrac{n!}{(n-r)!.r!}}{\dfrac{n!}{(n-(r-1))!.(r-1)!}}$$
    $$=r.\dfrac{n-(r-1))!.(r-1)!}{(n-r)!.r!}$$
    $$=r.\dfrac{(n-(r-1)}{r}$$
    $$=(n-(r-1))$$
    $$=n+1-r$$
    Applying summation
    $$\sum _{r=1} r^{n} (n+1)-r$$
    $$=n(n+1)-\dfrac{n(n+1)}{2}$$
    $$=(n+1)(n-\dfrac{n}{2})$$
    $$=\dfrac{n(n+1)}{2}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now