Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    If the fourth term of $${ \left( \sqrt { { x }^{ \left( \cfrac { 1 }{ 1+\log { x }  }  \right)  } } +\sqrt [ 12 ]{ x }  \right)  }^{ 6 }$$ is equal to 200 and $$x>1$$, then $$x$$ is equal to

  • Question 2
    1 / -0

    The number of irrational terms in the expansion of $$(\sqrt[8]{5}+\sqrt[6]{2})^{100}$$ is

  • Question 3
    1 / -0

    Directions For Questions

    If $${ C }_{ r }={ _{  }^{ n }{ C } }_{ r }$$ then to evaluate the expression 
    $$P= \sum _{ 0\le  }^{  }{ \sum _{ r<s\le n }^{  }{ { C }_{ r } } { C }_{ s } } $$, we make use of $${ C }_{ 0 }^{ 2 }+{ C }_{ 1 }^{ 2 }+....+{ C }_{ n }^{ 2 }={ _{  }^{ 2n }{ C } }_{ n }$$ and expansion of $${ \left( { C }_{ 0 }+{ C }_{ 1 }+....+{ C }_{ n } \right)  }^{ 2 }$$.

    ...view full instructions

    Value of $$P=\sum _{ 0\le  }^{  }{ \sum _{ r<s\le n }^{  }{ { C }_{ r } } { C }_{ s } } $$ is

  • Question 4
    1 / -0

    If $$n$$ is even, then value of the expression
    $${ C }_{ 0 }-\cfrac { 1 }{ 2 } { C }_{ 1 }^{ 2 }+\cfrac { 1 }{ 3 } { C }_{ 2 }^{ 2 }-.....+\cfrac { { \left( -1 \right)  }^{ n } }{ n+1 } { C }_{ n }^{ 2 }$$
    where
    $${ C }_{ r }={ _{  }^{ n }{ C } }_{ r }$$ is

  • Question 5
    1 / -0

    Directions For Questions

    If $$ \displaystyle C_{r}=^{n}C_{r} $$ then to evaluate the expansion $$ \displaystyle A=\sum \sum_{0\leq r\leq s\leq n}^{} $$ $$ \displaystyle C_{r}C_{s} $$, We make use of $$ \displaystyle \sum_{r=0}^{n}C_{r}^{2}=^{2n}C_{n} $$ and the expansion of $$ \displaystyle \left ( \sum_{r=0}^{n}C_{r} \right )^{2} $$. On the basis of above information answer the following questions.

    ...view full instructions

    The value of $$ \displaystyle B=\sum_{0\leq r\leq s\leq n}^{} $$ $$ \displaystyle \sum \left ( C_{r}-C_{s} \right )^{2} $$ is

  • Question 6
    1 / -0

    The value of the expression $$\displaystyle \frac{1 + 4\:.\:343 + 7\:.\:4 + 2\:.\:3\:.\:49 + 7\:.\:343}{16 + 2^6\:.\:3^1 + 2^{5}\:.\:3^{3} + 2^{6}\: . \: 3^{3} + 2^{4}\:.\:3^{4}}$$ equal

  • Question 7
    1 / -0

    If in the expansion of $${ \left( { x }^{ 3 }-\cfrac { 1 }{ { x }^{ 2 } }  \right)  }^{ n }$$,
    $$n\in N$$, sum of coefficient of $${ x }^{ 5 }$$ and $${ x }^{ 10 }$$ is $$0$$, then value of $$n$$ is

  • Question 8
    1 / -0

    If $${ S }_{ n }=1+q+{ q }^{ 2 }+{ q }^{ 3 }+...+{ q }^{ n }$$ and $$\displaystyle { S' }_{ n }=1+\left( \frac { q+1 }{ 2 }  \right) +{ \left( \frac { q+1 }{ 2 }  \right)  }^{ 2 }+...+{ \left( \frac { q+1 }{ 2 }  \right)  }^{ n },q\neq 1$$ then $$^{ n+1 }{ { C }_{ 1 } }+^{ n+1 }{ { C }_{ 2 } }.{ S }_{ 1 }+^{ n+1 }{ { C }_{ 3 } }.{ S }_{ 2 }+...+^{ n+1 }{ { C }_{ n+1 } }.{ S }_{ n }=$$

  • Question 9
    1 / -0

    $$\left( _{  }^{ m }{ { C }_{ 0 }^{  } }+^{ m }{ { C }_{ 1 }^{  } }-^{ m }{ { C }_{ 2 }^{  } }-^{ m }{ { C }_{ 3 }^{  } } \right) +\left( ^{ m }{ { C }_{ 4 }^{  } }+^{ m }{ { C }_{ 5 }^{  } }-^{ m }{ { C }_{ 6 }^{  } }-^{ m }{ { C }_{ 7 }^{  } } \right) +...=0$$ if and only if for some positive integer $$k, m=$$

  • Question 10
    1 / -0

    The value of $$\displaystyle ^{20}C_{0}+ ^{20}C_{1}+^{20}C_{2}+^{20}C_{4}+^{20}C_{12}+^{20}C_{13}+^{20}C_{14}+^{20}C_{15} $$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now