Self Studies

Binomial Theorem Test - 58

Result Self Studies

Binomial Theorem Test - 58
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the expansion of $$\left (5^{ \tfrac {1}{2}}+7^{\tfrac {1}{8}}\right )^{1024}$$, the number of integral terms is
    Solution
    The general term in the expansion of $$(5^{\tfrac 12} + 7^{\tfrac 18})^{1024}$$ is
    $$T_{r+1} = ^{1024}C_r (5^{\tfrac 12})^{1024-r} (7^{\tfrac 18})^r$$

    $$= ^{1024}C_r 5^{512-\tfrac{r}{2}} 7^{\tfrac{r}{8}}$$

    $$ = (^{1024}C_r 5^{512-r})(5^{\tfrac{r}{2}}7^{\tfrac{r}{8} })$$

    $$= (^{1024}C_r 5^{512r}) (5^4\times 7)^{\tfrac{r}{8}}$$

    Clearly $$T_{r+1}$$ will be an integer, if $$\dfrac{r}{8}$$ is an integer such that $$0\leq r\leq 1024$$
    $$\Rightarrow r$$ is a multiple of $$8$$ lying satisfying $$0\leq r \leq 1024$$
    $$ r = 0, 8, 16, ... 1024$$
    $$\Rightarrow r$$ can assume $$129$$ values.
    Hence, there are $$129$$ integral terms in the expansion of $$(5^{\tfrac 12} + 7^{\tfrac 18})^{1024}$$
  • Question 2
    1 / -0
    Value of
    $$S={ _{  }^{ n }{ C } }_{ r }+3({ _{  }^{ n-1 }{ C } }_{ r })+5({ _{  }^{ n-2 }{ C } }_{ r })+...+ $$ upto $$\quad (n-r+1)\quad terms$$
    Solution
    $$S=$$ coefficient of $${x}^{r}$$ in $$E$$ where $$E={ (1+x) }^{ n }+3{ (1+x) }^{ n-1 }+5{ (1+x) }^{ n-2 }+...+(2(n-r)+1)({ (1+x) }^{ r }$$
    Let $$F={ a }^{ n }+3{ a }^{ n-1 }+.....(2(n-r)+1){ a }^{ r }$$
    $$\Rightarrow \cfrac { 1 }{ a } F={ a }^{ n-1 }+....+(2(n-r)-3){ a }^{ r }+(2(n-r)+1){ a }^{ r-1 }\quad $$
    $$\Rightarrow \left( 1-\cfrac { 1 }{ a }  \right) F={ a }^{ n }+2{ a }^{ n-1 }+....+2{ a }^{ r }-(2(n-r)+1){ a }^{ r-1 }\quad $$
    $$={ a }^{ n }+\cfrac { 2{ a }^{ r }(1-{ a }^{ n-r }) }{ 1-a } -(2(n-r)+1){ a }^{ r-1 }$$
    $$\Rightarrow F=\cfrac { { a }^{ n+1 } }{ a-1 } -\cfrac { 2{ a }^{ r+1 }(1-{ a }^{ n-r }) }{ { (1-a) }^{ 2 } } -\cfrac { (2(n-r)+1){ a }^{ r } }{ a-1 } $$
    Thus,
    $$\quad E=\cfrac { { (1+x) }^{ n+1 } }{ x } +\cfrac { 2{ (1+x) }^{ n+1 } }{ { x }^{ 2 } } -\cfrac { 2{ (1+x) }^{ r+1 } }{ { x }^{ 2 } } -\cfrac { (2(n-r)+1){ (1+x) }^{ r } }{ x } $$
    $$\therefore \quad S={ _{  }^{ n+1 }{ C } }_{ r+1 }+2({ _{  }^{ n+1 }{ C } }_{ r+2 })\quad ={ _{  }^{ n+2 }{ C } }_{ r+2 }+({ _{  }^{ n+1 }{ C } }_{ r+2 })$$
    Hence, option B.
  • Question 3
    1 / -0
    The third term from the end in the expansion of $$\displaystyle\left(\frac{4x}{3y}-\frac{3y}{2x}\right)^9$$ is
    Solution
    Given, $$\left(\dfrac{4x}{3y}-\dfrac{3y}{2x}\right)^2$$

    The third term from the end in this expansion is
    $$T_3=T_{2+1}={^{9}C_2}\left(-\dfrac{3y}{2x}\right)^7\left(\dfrac{4x}{3y}\right)^2$$
    $$T_3=-{^{9}C_2}\dfrac{3^5}{2^3}\dfrac{y^5}{x^5}$$

    Trick: Remember whenever asked the term from end just reverse 'x' and 'y' in the general term formula given by,
    $$T_{r+1}={^{n}C_r}x^{n-r}y^r$$

    i.e., for end term
    $$T_{r+1}={^{n}C_r}y^{n-r}x^r$$.
  • Question 4
    1 / -0
    Find the value(s) of k such that the term independent of x in $$\displaystyle\left(3x^2+\frac{k}{2x}\right)^6$$ is 135.
    Solution
    Given,
    $$\left(3x^2+\dfrac{k}{2x}\right)^6$$

    general term,
    $$T_{r+1}={^{n}C_r}x^{n-r}y^r$$

    $$T_{r+1}={^{6}C_r}(3x^2)^{6-r}\left(\dfrac{k}{2x}\right)^r$$

    $$T_{r+1}={^{6}C_r}(3)^{6-r}(x)^{12-2r}\dfrac{(k)^r}{(2)^rx^r}$$

    $$T_{r+1}=\dfrac{^{6}C_r(3)^{6-r}(k)^r}{(2)^r}(x)^{12-3r}$$

    given term is independent of $$x$$

    $$12-3r=0$$

    $$12=3r$$

    $$r=4$$

    given term independent of x is $$135$$

    $$135={^{6}C_4}\dfrac{(3)^{6-4}k^4}{(2)^4}$$

    $$135=\dfrac{6!}{4!\times 2!}\dfrac{(3)^2}{(2)^4}k^4$$

    $$135=\dfrac{5\times 6(3)^2}{2(2)^4}k^4$$

    $$k^4=\dfrac{135\times 2\times 2}{5\times 6\times 3\times 3}$$

    $$k^4=2^4$$

    $$k=\pm 2$$.
  • Question 5
    1 / -0
    If the second ,third and fourth terms in the expansion of $${\left(x+y\right)}^{n}$$ are $$240,\,720$$ and $$1080$$ respectively, then the value of $$x,\,y,\,n$$ is
    Solution

  • Question 6
    1 / -0
    Maximum sum of the coefficients in the expansion of $$ (1 - x \sin \theta+ x^{2} )^{n} $$ is
    Solution
    $${ \left( 1-x\sin\theta +{ x }^{ 2 } \right)  }^{ n }$$
    We can get the sum of the coefficient by directly taking $$x=1$$ in the above expression.
    $$\Rightarrow S={ \left( 1-\sin\theta +1 \right)  }^{ n }$$
              $$={ \left( 2-\sin\theta \right)  }^{ n }$$
    $$-1\le\sin\theta\le1$$
    $$\Rightarrow$$ Minimum value of $$\sin\theta=-1$$
    $$\therefore$$ $$S_{max}={(2-(-1))}^n$$
                  $$=3^n.$$
    Hence, the answer is $$3^n.$$
  • Question 7
    1 / -0
    Find the coefficient of $$x^4$$ in the expansion of $$\left(2x^2+\frac{3}{x^3}\right)^7$$
    Solution
    Given, $$\left(2x^2+\dfrac{3}{x^3}\right)^7$$

    To find coefficient of $$x^4$$
    $$T_{r+1}={^{n}C_r}x^{n-r}y^r$$
    $$T_{r+1}={^{7}C_r}(2x^2)^{7-r}\left(\dfrac{3}{x^3}\right)^r$$
    $$T_{r+1}={^{7}C_r}(2)^{7-r}(x)^{14-2r}\dfrac{(3)^r}{x^{3r}}$$
    $$T_{r+1}={^{7}C_r}(2)^{7-r}(3)^r\times (x)^{14-5r}$$ ........$$(1)$$

    given to find coefficient of $$x^4$$
    $$14-5r=4$$
    $$14-4=5r$$
    $$5r=10$$
    $$r=2$$

    so putting $$r=2$$ in $$(1)$$
    $$T_{r+1}={^{7}C_2}(2)^{7-2}(3)^2(x)^4$$
    $$T_{r+1}={^{7}C_2}2^53^2x^4$$
    $$\therefore$$ So, coefficient of $$x^4$$ in the expansion of $$\left(2x^2+\dfrac{3}{x^3}\right)^7$$ is $$^{7}C_22^53^2$$.
  • Question 8
    1 / -0
    The sum of the series $$\frac{1}{1\times 2}^{25}C_0 + \frac{1}{2\times 3}^{23}C_1+\frac{1}{3\times 4}^{25}C_2+...... + \frac{1}{26\times 27}^{25}C_{25}$$
    Solution
    $$(1+x)^{25}=\displaystyle^{25}C_{0}+\displaystyle^{25}C_{1}x+\displaystyle^{25}C_{2}x^2+....+\displaystyle^{25}C_{25}x^{25}-------(1)$$
    Intergrating eq (1) w.r.t $$x$$ with limit $$0$$ to $$x$$
    $$\int_{0}^{x}(1+x)^{25}=\int_{0}^{x}(\displaystyle^{25}C_{0}+\displaystyle^{25}C_{1}x+\displaystyle^{25}C_{2}x^2+....+\displaystyle^{25}C_{25}x^{25})$$

    $$\Rightarrow \dfrac{(1+x)^{26}-1}{26}=\displaystyle^{25}C_{0}x+\dfrac{\displaystyle^{25}C_{1}x^2}{2}+\dfrac{\displaystyle^{25}C_{2}x^3}{3}+....+\dfrac{\displaystyle^{25}C_{25}x^{26}}{26}----(2)$$

    Intergrating eq (2) w.r.t $$x$$ with limit $$0$$ to $$1$$ , we get 
    $$\left [\dfrac{\displaystyle^{25}C_{0}x^2}{2}+\dfrac{\displaystyle^{25}C_{1}x^3}{2\times 3}+\dfrac{\displaystyle^{25}C_{2}x^4}{3\times 4}+....+\dfrac{\displaystyle^{25}C_{25}x^{27}}{26\times 27}  \right ]^1_{0}=\left [ \dfrac{(1+x)^{27}}{26\times 27}-\dfrac{x}{26} \right ]^1_{0}$$

    $$\dfrac{\displaystyle^{25}C_{0}}{1\times 2}+\dfrac{\displaystyle^{25}C_{1}}{2\times 3}+\dfrac{\displaystyle^{25}C_{2}}{3\times 4}+....+\dfrac{\displaystyle^{25}C_{25}}{26\times 27}=\dfrac{(2)^{27}-1}{26\times 27}-\dfrac{1}{26} $$

    $$\dfrac{\displaystyle^{25}C_{0}}{1\times 2}+\dfrac{\displaystyle^{25}C_{1}}{2\times 3}+\dfrac{\displaystyle^{25}C_{2}}{3\times 4}+....+\dfrac{\displaystyle^{25}C_{25}}{26\times 27}=\dfrac{2^{27}-28}{26\times 27}$$
  • Question 9
    1 / -0
    The number of terms in the expansion of $$(1 + 5\sqrt 2x)^9 + (1-5\sqrt 2x)^9$$ is:
    Solution

  • Question 10
    1 / -0
    The number of rational terms in the expansion of $$\left(x^{\displaystyle\frac{1}{5}}+y^{\displaystyle\frac{1}{10}}\right)^{45}$$ is
    Solution
    Given, $$\left(x^{\dfrac{1}{5}}+y^{\dfrac{1}{10}}\right)^{45}$$

    general term

    $$T_{r+1}={^{n}C_r}x^{n-r}y^r$$

    $$T_{r+1}={^{45}C_r}(x^{\dfrac{1}{5}})^{45-r}(y^{\dfrac{1}{10}})$$

    $$T_{r+1}={^{45}C_r}x^{9-\dfrac{r}{5}}(y)^{\dfrac{r}{10}}$$

    Rational term when

    $$r=0, 10, 20, 30, 40$$

    so, there are $$5$$ rational numbers.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now