Self Studies

Binomial Theorem Test - 59

Result Self Studies

Binomial Theorem Test - 59
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the expansion of $$\displaystyle\left(x^3+\frac{1}{x^2}\right)^n$$ contains a term independent of x, then the value of n can be
    Solution
    Given, $$\left(x^3+\dfrac{1}{x^2}\right)^n$$
    this contains a term independent of x.
    so general term $$T_{r+1}$$

    $$T_{r+1}={^{n}C_r}x^{n-r}y^r\\$$
    $$T_{r+1}={^{n}C_r}(x^3)^{n-r}\left(\dfrac{1}{x^2}\right)^r\\$$
    $$T_{r+1}={^{n}C_r}\dfrac{(x)^{3n-3r}}{x^{2r}}\\$$
    $$T_{r+1}={^{n}C_r}(x)^{3n-5r}$$

    Since, given term is indepedent of x.
    so, $$3n-5r=0$$
    $$3n=5r$$
    $$n=\dfrac{5r}{3}$$

    Since n should be an integer, using options
    if $$n=9$$ $$n=\dfrac{5\times 9}{3}$$    $$n=15$$ (not in options)

    so, $$r=15$$, $$n=\dfrac{5\times 15}{3}$$, $$n=25$$ (not in options)

    so, $$r=12$$, $$n=\dfrac{5\times 12}{3}$$, $$n=20$$(in options).
  • Question 2
    1 / -0
    In the expansion of $${ \left( \dfrac { 3{ x }^{ 2 } }{ 5 } +\dfrac { 5 }{ 3{ x }^{ 2 } }  \right)  }^{ 10 }$$ mid term is
    Solution
    Given expansion $$={ \left( \dfrac { 3{ x }^{ 2 } }{ 5 } +\dfrac { 5 }{ 3{ x }^{ 2 } }  \right)  }^{ 10 }$$
    On comparing with $${ \left( x+a \right)  }^{ n }$$, we get
    $$x=\dfrac { 3{ x }^{ 2 } }{ 5 } $$, $$a=\dfrac { 5 }{ 3{ x }^{ 2 } }$$ and $$n=10$$
    $$\because $$ Number of terms $$=10+1=11$$
    $$\therefore$$ Mid term $$ =\left( \dfrac { 11+1 }{ 2 }  \right)$$th term $$ =6$$th term
    Now, $${ T }_{ 6 }={ T }_{ 5+1 }=_{  }^{ 10 }{ { C }_{ 5 } }{ \left[ \dfrac { 3{ x }^{ 2 } }{ 5 }  \right]  }^{ 10-5 }{ \left[ \dfrac { 5 }{ 3{ x }^{ 2 } }  \right]  }^{ 5 }$$             $$\left[ \because { T }_{ r+1 }=_{  }^{ n }{ { C }_{ r } }{ x }^{ n-r }{ a }^{ r } \right] $$
             $$=_{  }^{ 10 }{ { C }_{ 5 } }{ \left[ \dfrac { 3{ x }^{ 2 } }{ 5 }  \right]  }^{ 5 }{ \left[ \dfrac { 5 }{ 3{ x }^{ 2 } }  \right]  }^{ 5 }=_{  }^{ 10 }{ { C }_{ 5 } }=252$$.
  • Question 3
    1 / -0
    If the sum of the coefficients in the expansion of $$(l^2x^2-2lx+1)^{50}$$ vanishes then $$l$$ is equal to:
    Solution
    $${(l^2x^2-2lx+1)}^{50}$$=$${(lx-1})^{100}$$
    If the sum of the coefficcents of the expansion vanishes mens equal to 0
    means on putting x=1
    $$\Rightarrow$$$$lx-1=0$$
    $$\Rightarrow$$$$l-1=0$$
    $$\Rightarrow$$$$l=1$$
  • Question 4
    1 / -0
    The term independent of $$x$$ in the expansion of $$\left [\sqrt {\dfrac {x}{3}} + \sqrt {\dfrac {3}{2x^{2}}} \right ]^{10}$$ is
    Solution
    $$T_{r + 1} = ^{10}C_{r} \left (\dfrac {x}{3}\right )^{\tfrac {10 - r}{2}} \left (\dfrac {3}{2x^{2}} \right )^{\tfrac {r}{2}}$$

    $$= ^{10}C_{r} x^{\tfrac {10 - r}{2} - r} \left (\tfrac {1}{2}\right )^{\tfrac {r}{2}} 3^{r - 5}$$ Put $$\dfrac {10 - r}{2} - r = 0$$

    $$\Rightarrow r = \dfrac {10}{3} \not {\epsilon}$$ whole number

    $$\therefore$$ No choice match

    $$\therefore$$ (d) is correct answer.
  • Question 5
    1 / -0
    If $$\sum _{ r=0 }^{ n-1 }{ { \left( \cfrac { { _{  }^{ n }{ C } }_{ r } }{ { _{  }^{ n }{ C } }_{ r }+{ _{  }^{ n }{ C } }_{ r+1 } }  \right)  }^{ 3 } } =\cfrac { 4 }{ 5 } $$ then $$n=$$
    Solution
    We know that $$\left( \begin{matrix} n \\ r+1 \end{matrix} \right) +\left( \begin{matrix} n \\ r \end{matrix} \right) =\left( \begin{matrix} n+1 \\ r+1 \end{matrix} \right) $$,
    $$\Longrightarrow \sum _{ 0 }^{ n-1 }{ { \left( \frac { \left( \begin{matrix} n \\ r \end{matrix} \right)  }{ \left( \begin{matrix} n+1 \\ r+1 \end{matrix} \right)  }  \right)  }^{ 3 } } =\sum _{ 0 }^{ n-1 }{ { \left( \frac { r+1 }{ n+1 }  \right)  }^{ 3 } } $$
    $$\\ \Longrightarrow \frac { { 1 }^{ 3 }+{ 2 }^{ 3 }+{ 3 }^{ 3 }+...+{ n }^{ 3 } }{ { \left( n+1 \right)  }^{ 3 } } \\ \Longrightarrow \frac { { n }^{ 2 }{ \left( n+1 \right)  }^{ 2 } }{ 4{ \left( n+1 \right)  }^{ 3 } } \\ \Longrightarrow \frac { { n }^{ 2 } }{ 4{ \left( n+1 \right)  } } $$
    Given that $$\frac { { n }^{ 2 } }{ 4{ \left( n+1 \right)  } } =\frac { 4 }{ 5 } $$
    $$\Longrightarrow 5{ n }^{ 2 }-16n-16=0\\ \Longrightarrow \left( n-4 \right) \left( 5n+4 \right) =0$$
    As $$n$$ is a natural number 
    $$\Longrightarrow n=4$$
  • Question 6
    1 / -0
    Sum of the last $$30$$ coefficients in the expansion of $${ \left( 1+x \right)  }^{ 59 }$$, when expanded in ascending power of $$x$$ is
    Solution

    $${ (1+x) }^{ n }=^{ n }C_{ 0 }+^{ n }C_{ 1 }x+^{ n }C_{ 2 }{ x }^{ 2 }.........^{ n }C_{ n }{ x }^{ n }\\ \Rightarrow ^{ n }C_{ 0 }+^{ n }C_{ 1 }+^{ n }C_{ 2 }.........^{ n }C_{ n }={ 2 }^{ n }$$ 

    For the given expansion $${ (1+x) }^{ 59 }$$ let sum of last $$30$$ coefficients be $$S$$

    $$S=^{ 59 }C_{ 30 }+^{ 59 }C_{ 31 }+^{ 59 }C_{ 32 }..........^{ 59 }C_{ 59 }$$    ....(i)

    As $$^{ n }C_{ r }=^{ n }C_{ n-r }$$

    $$\Rightarrow S=^{ 59 }C_{ 29 }+^{ 59 }C_{ 28 }+^{ 59 }C_{ 27 }..........^{ 59 }C_{ 0 }$$    ....(ii)

    Adding (i) and (ii), we get

    $$\Rightarrow 2S=^{ 59 }C_{ 0 }+^{ 59 }C_{ 1 }+^{ 59 }C_{ 2 }........^{ 59 }C_{ 59 }\\ \Rightarrow 2S={ 2 }^{ 59 }\\ \Rightarrow S={ 2 }^{ 58 }$$

    So, option B is correct.

  • Question 7
    1 / -0
    If $$(1+x)^{10} = a_0 + a_1x + a_2x^2 + ..... + a_{10}x^{10}$$, then value of $$(a_0 -a_2 + a_4 - a_6 + a_8 - a_{10})^2 + (a_1 -a_3 + a_5 - a_7 + a_9)^2$$ is
    Solution
    Here $${ a }_{ i }=^{ 10 }{ C }_{ i }$$
    ie,$${ ({ a }_{ 0 }-{ a }_{ 2 }+{ a }_{ 4 }-{ a }_{ 6 }+{ a }_{ 8 }-{ a }_{ 10 }) }^{ 2 }+{ ({ a }_{ 1 }-{ a }_{ 3 }+{ a }_{ 5 }-{ a }_{ 7 }+{ a }_{ 9 }) }^{ 2 }$$
    $$={ (^{ 10 }{ C }_{ 0 }-^{ 10 }{ C }_{ 2 }+^{ 10 }{ C }_{ 4 }-^{ 10 }{ C }_{ 6 }+^{ 10 }{ C }_{ 8 }-^{ 10 }{ C }_{ 10 }) }^{ 2 }+{ (^{ 10 }{ C }_{ 1 }-^{ 10 }{ C }_{ 3 }+^{ 10 }{ C }_{ 5 }-^{ 10 }{ C }_{ 7 }+^{ 10 }{ C }_{ 9 }) }^{ 2 }$$
    $$\Rightarrow { ((^{ 10 }{ C }_{ 0 }-^{ 10 }{ C }_{ 10 })+(^{ 10 }{ C }_{ 8 }-^{ 10 }{ C }_{ 2 })+(^{ 10 }{ C }_{ 4 }-^{ 10 }{ C }_{ 6 })) }^{ 2 }+{ ( (-1){ (-2) }^{ \frac { 10 }{ 2 }  }) }^{ 2 }={ 2 }^{ 10 }$$
    Since $$ \sum _{ i=0 }^{ \left[ n/2 \right]  }{ ^{ n }{ C }_{ 2i } } =\begin{cases} 0,\quad \text{If}\quad \dfrac { n+2 }{ 4 } \in \quad \text{Integers} \\ { (-1) }^{ \left[ (n+2)/4 \right]  }{ 2 }^{ \left[ n/2 \right]  } \end{cases}$$
    and $$\sum _{ i=0 }^{ \left[ n/2 \right]  }{ ^{ n }{ C }_{ 2i+1 } } =\begin{cases} 0,\quad \text{If}\quad \dfrac { n }{ 4 } \in \text{Integers} \\ { (-1) }^{ [n/4] }{ 2 }^{ [n/2] } \end{cases}$$
    Option A is correct
  • Question 8
    1 / -0
    The value of $$x$$ in the expression $${ \left( x+{ x }^{ \log _{ 10 }{ x }  } \right)  }^{ 5 }$$, if the third term in the expansion is $$1,000,000$$, is
    Solution
    $$\log { x } $$ is defined only when $$x>0$$
    Now, the $${ 3 }^{ rd }$$ term in the expansion
    $${ T }_{ 2+1 }=^{ 5 }{ { C }_{ 2 } }\cdot { x }^{ 5-2 }\cdot { \left( { x }^{ \log _{ 10 }{ x }  } \right)  }^{ 2 }=1,000,000$$         ....(Given)
    $$\Rightarrow { x }^{ 3+2\log _{ 10 }{ x }  }={ 10 }^{ 5 }$$
    Taking logarithm of both sides, we get
    $$\left( 3+2\log _{ 10 }{ x }  \right) \cdot \log _{ 10 }{ x } =5$$
    $$\Rightarrow 2{ y }^{ 2 }+3y-5=0$$
    where $$\log _{ 10 }{ x } =y$$
    $$\Rightarrow \left( y-1 \right) \left( 2y+5 \right) =0$$
    $$\Rightarrow y=1$$ or $${ -5 }/{ 2 }$$
    $$\Rightarrow \log _{ 10 }{ x } =1$$ or $${ -5 }/{ 2 }$$
    $$\Rightarrow x={ 10 }^{ 1 }=10$$ or $${ 10 }^{ { -5 }/{ 2 } }$$
  • Question 9
    1 / -0
    If there is a term containing $$x^{2r}$$ in $$\left( x + \dfrac{1}{x^2} \right )^{n - 3}$$, then
    Solution
    Suppose $$(s + 1)^{th}$$ term conains $$x^{2r}$$
    Then, we have
    $$T_{s + 1} = ^{n - 3}C_s x^{n - 3- s} \left( \dfrac{1}{x^2} \right )^s$$
    $$= ^{n - 3}C_s x^{n - 3 - 3s}$$
    This will contain $$x^{2r}$$, if
    $$n - 3 - 3 s = 2r$$
    $$\Rightarrow s = \dfrac{n - 3 - 2r}{3}$$
    $$\Rightarrow  s = \dfrac{n - 2r}{3} - 1$$
    $$\Rightarrow s + 1 = \dfrac{n - 2r}{3}$$
    $$\Rightarrow n - 2r = 3 ( s + 1)$$
    Hence, $$(n - 2r) $$ is a positive integral multiple of $$3$$.
  • Question 10
    1 / -0
    Coefficient of $$x^n$$ in the expansion of $$\left(\displaystyle 1+\frac{x}{1!}+\frac{x^2}{2!}+...+\frac{x^n}{n!}\right)^2$$ is?
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now