Self Studies

Binomial Theorem Test - 62

Result Self Studies

Binomial Theorem Test - 62
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the middle terms(s) in the expansion of $$\left ( 3x-\dfrac{2}{x^{2}} \right )^{15}$$.
    Solution

  • Question 2
    1 / -0
    The value of $$\dfrac{1}{12!}+\dfrac{1}{10!2!}+\dfrac{1}{8!4!}+...+\dfrac{1}{12!}$$
    Solution

  • Question 3
    1 / -0
    Coefficient of $$x^{25}$$ in $$(1+x+x^{2}+x^{3}+....+x^{10})^{7}$$ is
  • Question 4
    1 / -0
    The greatest terms of the expansion $$(2x+5y)^{13}$$ when $$x=10$$, $$y=2$$ is?
  • Question 5
    1 / -0
    The coefficient of $$x^{8}$$ in $$(1+2x^{2}-x^{3})^{9}$$ is 
    Solution

  • Question 6
    1 / -0
    The coefficient of x$$^9$$ in (x - 1) (x - 4) (x - 9)........(x - 100) is
    Solution

  • Question 7
    1 / -0
    Find the value of $$\dfrac{1}{\left(n-1\right)!}+\dfrac{1}{\left(n-3\right)!3!}+\dfrac{1}{\left(n-5\right)!5!}+...$$
    Solution

  • Question 8
    1 / -0
    The constant term in the expansion of $${ (1+x) }^{ n }{ (1+\frac { 1 }{ x } ) }^{ n }$$ is 
    Solution

  • Question 9
    1 / -0
    The coefficient of $$x^{3}$$ in the expansion of $$(1+2x+3x^{2})^{10}$$ is
    Solution

  • Question 10
    1 / -0
    The largest coefficient in the expansion of $$\left(4+3x\right)^{25}$$ is 
    Solution
    $$=(4+3 x)^{25}\\$$

    $$\left({}^{25} c_{0}(4)+{ }^{25} c_{1}(4)^{2}(3 x)+\cdots^{25} c_{25}\right.\\$$

    $$(4+3 x)^{25}\\$$

    $$\text { Let Tr the term is largest }\\$$

    $$\therefore \quad T_{r-1}<T_{r}>T_{r+1}\\$$

    $$=\frac{T_{2}}{T_{r_{-1}}}>1 \quad \frac{T_{r+1}}{T_{r}}<1$$

    $$T_{r+1^{}}= {}^{25} C_{r}(4)^{25-r}(3 x)^{k}$$

    $$T_{r-1}=25_{C_{r-2}}(4)^{25-r+2}(3 x)^{r-2}$$

    $$T_{r}={ }^{25} C_{r-1}\left(4\right)^{26-r}(3 x)^{r-1}$$

    $$\therefore \frac{25 C_{r-1}(4)^{26-r}(3 x)^{r-1}}{25 C_{r-2}(4)^{27-r}(3 x)^{r-2}}>1$$

    $$\frac{(25-r)}{(x-1)} \times \frac{3}{4}>1$$

    $${}75-3 r > 4 r -4\\ $$

    $$79>7 r\\$$

    $$11.1>r$$

    $$\Rightarrow r=12$$

    largest term = $$\left({ }^{25}c_{11}(3)^{25}\left(\frac{4}{3}\right)^{14}\right.)$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now