Self Studies

Binomial Theorem Test - 63

Result Self Studies

Binomial Theorem Test - 63
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The coefficient of $$x^4$$ in the expansion of $$(1+x+x^2+x^3)^{11}$$ is 
    Solution

    $$=\left(1+x+x^{2}+x^{3}\right)^{11}$$

    $$=\left((1+x)\left(1+x^{2}\right)\right)^{11}$$

    $$=(1+x)^{ 11}\left[1+^{11} c_{1} x^{2}+{ }^{11} c_{2} x^{4}+\cdots^{11} c_{11}\left(x^{2}\right)^{11}\right.]$$

    $$=\left[1+{ }^{11} c_{1} x+{ }^{11} c_{2} x^{2}+\cdots\right]\left[1+{ }^{11} c_{1} x^{2}+{ }^{11} c_{2} x^{4}+\cdots\right]$$

    $$={ }^{11} c_{0} \cdot{ }^{11} c_{2} \cdot x^{4}+{ }^{11} c_{2} \cdot{ }^{11} c_{1} \cdot x^{4}+{ }^{11} c_{4}{ }^{11} c_{0} x^{4}$$

    $$=\quad 990 x^{4}$$

    Option $$(A)$$
  • Question 2
    1 / -0
    If the last term in the binomial expansion of $$\left(2^{1/3}-\dfrac {1}{\sqrt {2}}\right)^{n}$$ is $$\left(\dfrac {1}{3^{5/3}}\right)^{\log_{3}8}$$, then the $$5^{th}$$ terms form the beginning is:
    Solution

  • Question 3
    1 / -0
    The co-efficient of $$x^{k}$$ in expansion of $$1+\left(1+x\right)+\left(1+x\right)^{2}++\left(1+x\right)^{n}$$ is : $$\left(n>k\right)$$
  • Question 4
    1 / -0
    For $$x\in R, x\neq -1$$ if $$(1+x)^{2016}+x(1+x)^{2015}+x(1+x)^{2014}+.+x^{2016}=\sum _{ i=0 }^{ 2016 }{ { a }_{ i }{ x }^{ i } }$$, then  $$a_{17}$$ is equal to 
    Solution

  • Question 5
    1 / -0
    The coefficients of $$x^{10}$$ in the expansion of $$(1+x)^{15}+(1+x)^{16}+(1+x)^{17}+....+(1+x)^{30}$$ is 
    Solution

  • Question 6
    1 / -0
    The sum of the coefficient in the expansion of $$(a+2b+c)^{11}$$ is-
    Solution

  • Question 7
    1 / -0
    Coefficient of $$x^{11}$$ in the extension of $$(1+x^{2})^{4}(1+x^{3})^{7}(1+x^{4})^{12}$$ is 
    Solution

  • Question 8
    1 / -0
    If the variable takes the values 0,1,2,....., n with frequericies proportional to the binomial coefficients $$C\left( n,0 \right) ,C\left( n,1 \right) ,C\left( n,2 \right) ...,C\left( n,n \right) $$ respectively, then the variance of the distribution is :-
    Solution

  • Question 9
    1 / -0
    The coefficient of $$x^n$$ in the binomial expansion of $$(1-x)^{-2}$$, is
    Solution

  • Question 10
    1 / -0
    The coefficient of $${x}^{n}$$ in the expansion of $$\dfrac { 1 }{ \left( 1-x \right) \left( 1-2x \right) \left( 1-3x \right)  }$$ is
    Solution

    $$\text { We know that } \\$$

    $$\frac{1}{1-a} \text { is sum of } \infty GP=1+a+a^{2}+a^{3} \ldots\infty \\$$

    $$\text { Similary: }$$

    $$\frac{1}{(1-x)(1-2 x)(1-3 x)}={\left(1+x+x^{2}+\ldots\infty\right)\left(1+(2 x)+(2 x)^{2}\ldots\infty\right)}\\ $$

    $${\left(1+(3 x)+(3 x)^{2}+(3 x)^{3}\ldots\infty\right.)}$$

    From this equation, we observe that

    coefficient of $$x^{n}$$ is $$: \rightarrow$$

    $$\frac{1}{2}\left[2^{n+2}-3^{n+3}+1\right]$$

    Option (a)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now