Self Studies

Binomial Theorem Test - 64

Result Self Studies

Binomial Theorem Test - 64
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of rational terms in the expansion of $${ \left( 1+\sqrt { 2 } +\sqrt [ 3 ]{ 3 }  \right)  }^{ 6 }$$ is
    Solution

  • Question 2
    1 / -0
    If $${ x }^{ m }$$ occurs in the expansion of $$(x+\frac { 1 }{ { x }^{ 2 } } )^{ 2n }$$, the coefficient of $${ x }^{ m }$$, is 
    Solution

  • Question 3
    1 / -0
    The coefficient of x$$^{24}$$ in the expansion of 
    (1 +3x + 6x$$^2$$ + 10x$$^3$$+ -----------+$$\infty$$)$$^{2/3}$$ =
    Solution

    $$\left(1+3 x+6 x^{2}+10 x^{3}+\ldots\infty\right)^{\frac{2}{3}} \\$$

    $$\text { We know that, } \\$$

    $${ (1+\alpha) }^{n}=1+n \alpha+\frac{n(n-1) \alpha^{2}}{2 !}+\ldots \\$$

    $$\text { comparing with given eqn, }$$

    $$\frac{n(n-1)}{2}  \cdot \alpha^{2}=6 x^{2} \\$$

    $$=n(n-1) \frac{9 x^{2}}{n^{2}}=6 x^{2} \\$$ 

    $$\Rightarrow n=-3$$ 

    $$n \alpha=3 x$$

    $$\Rightarrow\alpha=\frac{3 x}{n}$$

    $$\alpha=-x$$

    $$\therefore \text {Expansion is} (1-x)^{-\not 3 \times \frac{2}{\not3}}$$

    $$\quad =(1-x)^{-2}$$

    $$=1+2 x+\frac{2 \times 3}{2 !} x^{2}+\frac{2 \times 3 \times 4}{3 !} x^{3}+\ldots$$

    $$\therefore$$ coeff. of $$x^{24}$$ is 2

    $$= \frac{2 \times 3 \times 4 \times\ldots25}{24 !}$$

    $$=25$$
  • Question 4
    1 / -0
    The number of terms in the expansion of $${ \left[ { a }^{ 3 }+\dfrac { 1 }{ { a }^{ 3 } } +1 \right]  }^{ 100 }$$ is
    Solution

    $$\left(a^{3}+\frac{1}{a^{3}}+1\right)^{100} \\$$

    $$\frac{1}{a^{300}}\left(1+a^{3}+a^{6}\right)^{100}$$

    Here, terms will be in the form,

    $$a^{0} ; a^{3}, a^{6}\cdots$$

    and highest power term will be $$\left(a^{6}\right)^{100}$$

    This forms a A.P of powers,

    $$\therefore \quad 600=0+(n-1) 3$$

    $$\therefore \quad n=201 \\$$

    $$\text { Option (a) }$$
  • Question 5
    1 / -0
    The middle term in the expansion of $$\left(1-\dfrac{1}{x}\right)^{n}\left(1-x\right)^{n}$$ is
    Solution

  • Question 6
    1 / -0
    The coefficient of $$a^{3}b^{4}c$$ in the expansion of $$(1+a+b-c)^{9}$$ is 
    Solution

  • Question 7
    1 / -0
    If the middle term in the expansion of $$( 1 + x ) ^ { 2 n }$$ is the greatest term, then $$x$$ lies in the interval ___________________.
  • Question 8
    1 / -0
    In the expansion of $$(\dfrac{1+x}{1-x})^2$$ , the coefficient of $$x^n$$ will be 
    Solution

  • Question 9
    1 / -0
    Coefficient of $${ t }^{ 12 }$$ in $$({ 1+t }^{ 2 }{ ) }^{ 6 }{ (1+t }^{ 6 }){ (1+t }^{ 12 })$$ is:
    Solution

  • Question 10
    1 / -0
    The coefficient of $$x^{4}$$ in $$\dfrac{3x^{2}+2x}{(x^{2}+2)(x-3)}$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now