Self Studies

Binomial Theorem Test - 68

Result Self Studies

Binomial Theorem Test - 68
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Coefficient of $$x^ {15}$$ in $$(1+x+x^ {3}+x^ {4})$$^ {n} is
    Solution

  • Question 2
    1 / -0
    The coefficient of  $$x^m$$ in the expansion of  $$(1+)^{m+n}$$ is -

    Solution

  • Question 3
    1 / -0
    The 11$$^{th}$$ term from last, in expansion of (2x+$$\frac{1}{^{x2}}$$ is
    Solution

  • Question 4
    1 / -0
    The total number of irrational terms in the binomial expansion of $${ \left( { 7 }^{ 1/5 }-{ 3 }^{ 1/10 } \right)  }^{ 60 }$$  is :
    Solution

  • Question 5
    1 / -0
    the number of terms in the expansion of $${\left( {x + y - x} \right)^3}$$ is  
    Solution

  • Question 6
    1 / -0
    The number of distinct terms in the expansion of $${ \left( { x+y }^{ 2 } \right)  }^{ 13 }+{ \left( { x }^{ 2 }+y \right)  }^{ 14 }$$ is...
    Solution

  • Question 7
    1 / -0
    Find the middle terms of the equation of $$\left(x^4 - \dfrac{1}{x^3}\right)^{11}$$.
    Solution
    Given expression is $$\left(x^4-\dfrac{1}{x^3}\right)^{11}$$
    Here index,  $$n=11$$ (odd)
    so, there are two middle terms, which are $$\left(\dfrac{11+1}{2}\right)^{th}$$ i.e, $$6^{th}$$ term and $$\left(\dfrac{11+3}{2}\right )^{th}$$ i.e $$7^{th}$$ term.

    $$T_6=T_{5+1}=^{11}C_5(x^4)^{11-5}\left(\dfrac{-1}{x^3}\right)^5$$

              $$=\dfrac{11!}{6!5!}(x^4)^6 \left(\dfrac{-1}{x^{15}}\right)$$

              $$=\dfrac{-11\times 10\times 9\times 8\times 7\times 6!}{6!\times 5\times 4\times 3\times 2} \dfrac{x^{24}}{x^{15}}$$

             $$=-462 x^9$$

    $$T_7=T_{6+1}=^{11}C_6(x^4)^{11-6}\left(\dfrac{-1}{x^3}\right)^6$$

                $$=\dfrac{11!}{5!\times 6!}(x^4)^5 \left(\dfrac{1}{x^{18}}\right)$$

                $$=462 x^2$$
  • Question 8
    1 / -0
    The coefficient of $$  x^{2 n+1}  $$ in the expansion of $$  E=\frac{1}{(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right) \ldots\left(1+x^{2 m}\right)}|x|<1  $$ is
    Solution

  • Question 9
    1 / -0
    The coefficient of $$  x^{5}  $$ in the expansion of $$ \left(x^{2}-x-2\right)^{5}  $$ is
    Solution

    $${\textbf{Step -1: Identify binomial coefficients and number of terms in a binomial expansion.}}$$

                   $$(x^2-x-2)^5=(x^2-2x+x-2)^5$$

                   $$=(x(x-2)+1(x-2))^5$$

                   $$=((x-2)(x+1))^5$$

                   $$=(x-2)^5(x+1)^5$$

                   $$=[^{5}C_{0}x^5+^{5}C_{1}x^4.(-2)+^{5}C_{2}x^3.(-2)^2+^{5}C_{3}x^2.(-2)^3+^{5}C_{4}x.(-2)^4+(-2)^5]$$

                                                                                                $$\times[^{5}C_{0}x^5+^{5}C_{1}x^4+^{5}C_{2}x^3+^{5}C_{3}x^2+^{5}C_{4}x+1]$$

                   $$\therefore\text{coefficient of }x^5\text{ in the expansion of the product }(x-2)^5(x+1)^5$$

                   $$=-2^5+1+^5C_2 .^5C_3(-2)^3+^5C_3 .^5C_2(-2)^2+^5C_4 .^5C_1(-2)^1+^5C_1 .^5C_4(-2)^4$$

                   $$=-32+1-800+400-50+400$$

                   $$=-81$$

    $${\textbf{Hence, option C is correct.}}$$

  • Question 10
    1 / -0
    Coefficient of $$  x^{5}  $$ in the expansion of $$ \left(x^{2}-x-2\right)^{5} $$ is
    Solution

    $${\textbf{Step -1: Identify binomial coefficients and number of terms in a binomial expansion.}}$$

                   $$(x^2-x-2)^5=(x^2-2x+x-2)^5$$

                   $$=(x(x-2)+1(x-2))^5$$

                   $$=((x-2)(x+1))^5$$

                   $$=(x-2)^5(x+1)^5$$

                   $$=[^{5}C_{0}x^5+^{5}C_{1}x^4.(-2)+^{5}C_{2}x^3.(-2)^2+^{5}C_{3}x^2.(-2)^3+^{5}C_{4}x.(-2)^4+(-2)^5]$$

                                                                                                $$\times[^{5}C_{0}x^5+^{5}C_{1}x^4+^{5}C_{2}x^3+^{5}C_{3}x^2+^{5}C_{4}x+1]$$

                   $$\therefore\text{coefficient of }x^5\text{ in the expansion of the product }(x-2)^5(x+1)^5$$

                   $$=-2^5+1+^5C_2 .^5C_3(-2)^3+^5C_3 .^5C_2(-2)^2+^5C_4 .^5C_1(-2)^1+^5C_1 .^5C_4(-2)^4$$

                   $$=-32+1-800+400-50+400$$

                   $$=-81$$

    $${\textbf{Hence, option C is correct.}}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now