Self Studies

Binomial Theorem Test - 70

Result Self Studies

Binomial Theorem Test - 70
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of irrational terms in the expansion of$$( \sqrt [ 8 ] { 5 } + \sqrt [ 6 ] { 2 } ) ^ { 100 } ,$$ is
    Solution

  • Question 2
    1 / -0
    The number of irrational terms in the expansion of$$( \sqrt [ 8 ] { 5 } + \sqrt [ 6 ] { 2 } ) ^ { 100 } ,$$ is
  • Question 3
    1 / -0
    The value of m, for which the coefficients of the $$\left( {2m + 1} \right)$$ and $${\left( {4m + 5} \right)^{th}}$$ terms in the expansion $${\left( {1 + x} \right)^{10}}$$ are equal, is:

    Solution

  • Question 4
    1 / -0
    The number of terms in the expansion of $$ ( 2 x + 3 y - 4 z ) ^ { n } $$ ,is
    Solution

  • Question 5
    1 / -0
    COEFFICIENT OF $$x^k$$ IN $$(ax + b)^n$$
    The coefficient if x in the expansion of $$\displaystyle (1 2x^3 + 3x^5)\left ( 1 + \dfrac{1}{x} \right )^8 $$ is 
    Solution

  • Question 6
    1 / -0
    In the expansion of $${ \left( { x }^{ 2 }+1+\frac { 1 }{ { x }^{ 2 } }  \right)  }^{ n }$$, $$n\in N$$, then
    Solution

  • Question 7
    1 / -0
    The sum of coefficients of integral powers of $$x$$ in the binomial expansion of $${\left(1-2\sqrt{x}\right)}^{-n}$$ is
    Solution

  • Question 8
    1 / -0
    The coefficient of $$x ^ { 4 }$$ in the expansion of $$\left( 1 + x + x ^ { 2 } + x ^ { 3 } \right) ^ { 11 }$$ is
    Solution

  • Question 9
    1 / -0
    In the expression of $$(1+x)^{50}$$. Let S  be the sum of coefficient of odd power of x. then S is:
    Solution

  • Question 10
    1 / -0
    If the last term in the binomial expansion of $$ (2{  }^{ \frac { 1 }{ 3 }  }-\frac { 1 }{ \sqrt { 2 }  } ){  }^{ n }\quad is\quad (\frac { 1 }{ { 3 }^{ \frac { 5 }{ 3 }  } } ){  }^{ log{  }_{ 3 }8 }$$ , then the 5th term from the beginning  is
    Solution
    Given,

    $$\left ( 2^{\frac{1}{3}}-\dfrac{1}{\sqrt 2} \right )^n$$

    last term of $$(x-a)^n=(-1)^n(a)^n$$

    last term of given equation,

    $$(-1)^n\left ( \dfrac{1}{2^{\frac{n}{2}}} \right )=\left ( \dfrac{1}{3\cdot 9^{\frac{1}{3}}} \right )^{\log_3 8}$$

    $$=\left ( \dfrac{1}{3\cdot 3^{\frac{2}{3}}} \right )^{\log_3 8}$$

    $$=\left ( \dfrac{1}{ 3^{\frac{5}{3}}} \right )^{\log_3 8}$$

    $$=\left ( \dfrac{1}{ 3^{\frac{5}{3}\log_3 8}} \right )$$

    $$=\left ( \dfrac{1}{ 3^{\log_3 8^{\frac{5}{3}}}} \right )$$

    $$=\dfrac{1}{8^{\frac{5}{3}}}$$

    $$=\dfrac{1}{2^5}$$

    $$\Rightarrow \dfrac{n}{2}=5$$

    $$\therefore n=10$$

    now,

    $$\left ( 2^{\frac{1}{3}}-\dfrac{1}{\sqrt 2} \right )^{10}$$

    $$T_5=T_{4+1}=^{10}C_4(2^{\frac{1}{3}})^{10-4}\left ( \dfrac{1}{2^{\frac{1}{2}}} \right )^4(-1)^4$$

    $$=^{10}C_4(2^{\frac{6}{3}})\left ( \dfrac{1}{2^{\frac{4}{2}}} \right )$$

    $$=^{10}C_4(2^2)\left ( \dfrac{1}{2^2} \right )$$

    $$=^{10}C_4$$

    $$=210$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now