Self Studies

Binomial Theorem Test - 75

Result Self Studies

Binomial Theorem Test - 75
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The coefficient of $$x^{m}$$ in $$(1 + x)^{p} + (1 + x)^{p + 1} + .... + (1 + x)^{n}, p\leq m\leq n$$ is
    Solution

  • Question 2
    1 / -0
    The sum of the binomial coefficients of $$\left[2x+\cfrac{1}{x}\right]^n$$ is equal to $$256$$. The constant term in the expansion is 
    Solution

  • Question 3
    1 / -0
    The coefficient of $$x^{9}$$ in the expansion of (1+x)$$(1+x^{2})(1+x^{3})....(1+x^{100})$$ is____.
  • Question 4
    1 / -0
    The first integral term in the expansion of $$(\sqrt{3}+\sqrt[3]{2})^{9}$$, is its
    Solution

  • Question 5
    1 / -0
    The sum of the coefficients in the expansion of $${ (1+x-{ 3x }^{ 2 }) }^{ 171 }$$ is 
  • Question 6
    1 / -0
    Co-efficient of $$x^{n-1}$$ in the expansion of, $$(x+3)^{n}+(x+3)^{n-1}(x+2)+(x+3)^{n-2}(x+2)^{2}+...+(x+2)^{n}$$ is:
    Solution

  • Question 7
    1 / -0
    In the expansion of $$(x+y+z)^{10}$$
  • Question 8
    1 / -0
    If in the expansion of  $$\left( 2 ^ { x } + \dfrac { 1 } { 4 ^ { x } } \right) ^ { n } , T _ { 3 } = 7 T _ { 2 }$$  and sum of the binomial coefficients of second and third terms is  $$36 ,$$  then the value of  $$x$$  is -
    Solution

  • Question 9
    1 / -0
    The first three terms in the expansion of $$(1 - ax)^{n}$$, where $$n$$ is positive integer are, $$1 - 4x + 7x^{2}$$, then the value of $$a$$
  • Question 10
    1 / -0
    The value of x for  which the sixth term in the expansion of 
    $$\left [ 2^{\log_{2}{\sqrt{9^{x-1}+7}}}+\dfrac{1}{2^{\frac{1}{5}\log_{2}{(3^{x-1}+1)}}} \right ]^{7}$$ is equal to 84 is 
    Solution
    Here we have,
    $$\left [ 2^{\log_{2}{\sqrt{9^{x-1}+7}}}+\dfrac{1}{2^{\frac{1}{5}\log_{2}{(x-1)}+1}} \right ]^{7}=\left[ \sqrt{9^{x-1}+7} +(3^{x-1}+1)^{(-1/5)}\right]^7$$

    The sixth term in the expansion is given by,
    $$T_6=\ ^7C_5 ( \sqrt{9^{x-1}+7})^2\cdot \left\{(3^{x-1}+1)^{(-1/5)}\right\}^5\\ \Rightarrow 84=21 \cdot(9^{x-1}+7)\cdot(3^{x-1}+1)^{-1}\\ \Rightarrow \dfrac{84}{21}=\dfrac{9^{x-1}+7}{3^{x-1}+1}\\\Rightarrow 4\cdot (3^{x-1}+1)=(3^{x-1})^2+7\\ \Rightarrow (3^{x-1})^2-4\times 3^{x-1}+3=0\\ \Rightarrow  (3^{x-1}-1)(3^{x-1}-3)=0$$
    $$ \Rightarrow  3^{x-1}=1$$  or  $$3$$
    $$\Rightarrow 3^{x-1}=3^0$$  or  $$3^1$$
    $$\Rightarrow  x-1=0$$  or  $$1$$
    $$\Rightarrow x=1, 2$$

    Hence, option (B) is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now