Self Studies

Binomial Theorem Test - 76

Result Self Studies

Binomial Theorem Test - 76
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the expansion of $$\left( 1+ \right) ^{ 50 },$$ the sum of the coefficient of odd powers of x is _______.
    Solution

  • Question 2
    1 / -0
    Find the middle term(s) in the expansion of :
    $$\left(2ax-\dfrac{b}{x^{2}}\right)^{12}$$
    Solution
    Given that to find middle term in expansion of $$\left(20x-\dfrac{b}{x^{2}}\right)^{12}$$

    $$n=12\Rightarrow$$ even

    for even number middle term $$=\left(\dfrac{n}{2}+1\right)th$$

    middle term $$=\left(\dfrac{12}{2}+1\right)th\Rightarrow 7$$

    We know that $$T_{r+1}=\ ^{n}C_{r}(a)^{n-r}b^{r}$$

    $$T_{7}=T_{6+1}=\ ^{12}C_{6}(29 x)^{12-6}\left(\dfrac{-b}{x^{2}}\right)^{6}$$

    $$=\dfrac{12!}{6!6!}2^{6}a^{6}x^{6}\dfrac{b^{6}}{x^{12}}$$

    $$=\dfrac{12\times 11\times 10\times 9\times 8\times 7\times 6!}{6\times 5\times 4\times 3\times 2\times 1\times 6!}2^{6}\dfrac{a^{6}b^{6}}{x^{6}}$$

    $$=\dfrac{59136 a^{6}b^{6}}{x^{6}}$$
  • Question 3
    1 / -0
    The constant term in the expansion of $$(x^{2}-\frac{1}{x^{2}})^{16}$$ is 
    Solution

  • Question 4
    1 / -0
    Find the middle term(s) in the expansion of :
    $$\left(2x-\dfrac{x^{2}}{4}\right)^{9}$$
    Solution
    Given expansion term is $$\left(2x-\dfrac{x^{2}}{4}\right)^{9}$$

    $$n=9=$$ odd

    middle term $$=\left(\dfrac{9+1}{2}\right)^{th}+\left(\dfrac{9+3}{2}\right)^{th}$$

    $$=5^{th}$$ or $$6^{th}$$ term

    $$T_{5}=T_{4+1}=\ ^{9}C_{4}(2x)^{5}\left(\dfrac{-x^{2}}{4}\right)^{4}$$

    $$=\dfrac{9!}{4!5!}2^{5}\times x^{5}(-1)^{4}\times \dfrac{x^{8}}{4^{4}}$$

    $$=\dfrac{9\times 8\times 7\times 6\times 5!}{4\times 3\times 2\times 5!}\times \dfrac{2^{5}.x^{13}.1}{2^{5}}$$

    $$T_{5}=\dfrac{63}{4}x^{13}$$

    $$T_{6}=T_{5+1}=\ ^{9}C_{5}(2x)^{4}\left(\dfrac{-x^{2}}{4}\right)^{5}$$

    $$=\dfrac{9!}{4!5!}\times 2^{4}x^{4}(-1)^{5}\dfrac{x^{10}}{4^{5}}$$

    $$=\dfrac{9\times 8\times 7\times 6\times 5!}{4\times 3\times 2\times 5!}2^{4}\dfrac{x^{14}}{2^{10}}$$

    $$T_{6}=\dfrac{-63}{32}x^{14}$$
  • Question 5
    1 / -0
    The coefficient of the middle term in the binomial expansion in powers of x of $$(1+\alpha x)^{4}$$ and of $$(1-\alpha x)^{6}$$ is the same if $$\alpha $$ equals : 
    Solution
    $$\textbf{Step 1: Calculating coefficient of individual term}$$
                    $$\text{The middle term of the binomial expansion }(1+\alpha x)^4$$$$\text{ will be the }(\dfrac42+1)=\text{ 3rd term}$$
                    $$\text{The middle term of the binomial expansion }(1-\alpha x)^6 \text{will be the }(\dfrac62+1)=\text{ 4th term}$$
                    $$\text{Coefficient of3rd term of }(1+\alpha x)^4=^4C_2\alpha^2$$                     
                    $$\text{Coefficient of 4th term of }(1-\alpha x)^6=-^6C_3\alpha^3$$ 
    $$\textbf{Step 2: Calculating }\mathbf{\alpha}$$                  
                    $$\text{Equating both the coefficients}$$
                    $$\implies ^4C_2\alpha^2=-^6C_3\alpha^3$$   
                    $$\implies 6\alpha^2=-20\alpha^3 $$
                    $$\implies \alpha=-\dfrac6{20}=-\dfrac3{10}$$
    $$\mathbf{\text{Hence, The value of }\alpha =-\dfrac3{10}}$$
  • Question 6
    1 / -0
    Find the middle term in the expansion of 
    $$\left(\dfrac{2}{3}x-\dfrac{3}{2x}\right)^{20}$$
    Solution
    Given that, $$\left(\dfrac{2x}{3}-\dfrac{3y}{2}\right)^{20}$$

    $$n=20\Rightarrow$$ even 

    For even values of $$n$$, middle term is $$\left(\dfrac{n}{2}+1\right)th$$

    $$\Rightarrow$$ middle term $$=\left(\dfrac{20}{2}+1\right)th=11th$$

    Now use the formula $$T_{r+1}=\ ^{n}C_{r}(a)^{n-r}(b)^{r}$$

    Here, $$r=10, a=\dfrac{2x}{3},b=\dfrac{3y}{2}$$

    $$T_{11}=T_{10+1}=\ ^{20}C_{10}\left(\dfrac{2x}{3}\right)^{20-10}\left(\dfrac{3y}{2}\right)^{10}$$

    $$T_{11}=\ ^{20}C_{10}\left(\dfrac{2x}{3}\right)^{10}\left(\dfrac{3y}{x}\right)^{10}$$

    $$T_{11}=\ ^{20}C_{10}x^{10}y^{10}$$
  • Question 7
    1 / -0
    Find the middle term in the expansion of :
    $$\left(x^{2}-\dfrac{2}{x}\right)^{10}$$
    Solution
    Given to find middle term in the expansion of $$\left(x^{2}-\dfrac{2}{x}\right)^{10}$$

    $$n=10\Rightarrow$$ even

    for even numbers middle term is $$\left(\dfrac{n}{2}+1\right)th$$

    middle term $$=\left(\dfrac{10}{2}+1\right)th=6^{th}$$

    We know that $$T_{r+1}=\ ^{n}C_{r}(a)^{n-r}(b)^{r}$$

    $$T_{6}=T_{5+1}=\ ^{10}C_{5}(x^{2})^{5}\left(\dfrac{-2}{x}\right)^{5}$$

    $$=\dfrac{-10!}{5!5!}x^{10}\dfrac{2^{5}}{x^{5}}$$

    $$T_{6}=-8064 x^{5}$$
  • Question 8
    1 / -0
    Find the middle term(s) in the expansion of :
    $$\left(3x-\dfrac{x^{3}}{6}\right)^{9}$$
    Solution
    Given that to find middle term in expansion of $$\left(3x-\dfrac{x^{3}}{6}\right)^{9}$$

    $$n=9\Rightarrow$$ odd

    For odd values, there are two middle terms.

    First middle term $$=\dfrac{n+1}{2}^{th}$$ term : $$\Rightarrow \left(\dfrac{9+1}{2}\right)^{th}$$ term $$=5^{th}$$ term

    Second middle term $$=\left(\dfrac{n+1}{2}+1\right)^{th}$$ term; $$\Rightarrow \left(\dfrac{9+1}{2}+1\right)^{th}$$ term $$=6^{th}$$ term 

    We know that $$T_{r+1}=\ ^{9}C_{r}(3x)^{r}\left(\dfrac{-x^{3}}{6}\right)^{r}$$

    $$=\ ^{9}C_{r}(3^{r})x^{r}(-1) x^{3r}\left(\dfrac{1}{6}\right)^{r}$$

    $$T_{r+1}=T_{5}\Rightarrow r+1=5\Rightarrow r=4$$

    $$T_{4+1}=\ ^{9}C_{4}(3x)^{9-4}\left(\dfrac{-x^{3}}{6}\right)^{4}$$     $$T_{5+1}=\ ^{9}C_{5}(3x)^{9-5}\left(\dfrac{-x^{3}}{6}\right)^{5}$$

    $$=\dfrac{9!}{5!4!}3^{5}x^{5}\dfrac{x^{12}}{6^{4}}$$                          $$=\dfrac{9!}{4!5!}3^{4}x^{4}\dfrac{x^{15}}{6^{5}}$$

    $$=126\dfrac{3^{5}x^{12}\times x^{5}}{64}$$                       $$=\dfrac{-21}{16}x^{19}$$

    $$=\dfrac{189}{7}x^{17}$$
  • Question 9
    1 / -0
    Find the middle term(s) in the expansion of :
    $$\left(\dfrac{p}{x}+\dfrac{x}{p}\right)^{9}$$
    Solution
    Given that to find middle term in expansion of $$\left(\dfrac{P}{x}+\dfrac{x}{P}\right)^{9}$$

    $$n=9\Rightarrow $$ odd

    For off values there are two middle terms

    First middle term $$=\left(\dfrac{n+1}{2}\right)^{th}$$ term $$\Rightarrow \left(\dfrac{9+1}{2}\right)^{th}$$ term $$=5^{th}$$ term

    second middle term $$=\left(\dfrac{n+1}{2}+1\right)^{th}$$ term $$=\left(\dfrac{9+1}{2}+1\right)^{th}$$ term $$=6^{th}$$ term

    We know that $$T_{r+1}=\ ^{9}C_{r}\left(\dfrac{P}{x}\right)^{9-r}\left(\dfrac{x}{P}\right)^{r}$$

    $$T_{r+1}=T_{5}\Rightarrow r+1=5\Rightarrow r=4$$

    $$T_{4+1}=\ ^{9}C_{4}\left(\dfrac{P}{x}\right)^{5}\left(\dfrac{x}{P}\right)^{4}$$

    $$=\dfrac{9!}{4!5!}\dfrac{P^{5}}{x^{5}}\Rightarrow 126 \dfrac{P}{x}$$

    $$T_{r+1}=T_{0}\Rightarrow r+1=6\Rightarrow r=5$$

    $$T_{5+1}=\ ^{9}C_{5}\left(\dfrac{P}{x}\right)^{4}\left(\dfrac{x}{P}\right)^{5}$$

    $$=\dfrac{9!}{4!5!}\dfrac{P^{4}}{x^{4}}\dfrac{r^{5}}{P^{5}}$$

    $$=126\dfrac{x}{P}$$
  • Question 10
    1 / -0
    Find the coefficient of $$x^{7}$$ in the expansion of $$\left(x-\dfrac{1}{x^{2}}\right)^{40}$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now