Self Studies

Binomial Theorem Test - 9

Result Self Studies

Binomial Theorem Test - 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The sum of coefficient of integral powers of $$x$$ in the binomial expansion of $$(1-2\sqrt x)^{50}$$ is :
    Solution
    $$(1-2\sqrt{x})^{50}=  ^{50}C_0-^{50}C_1(2\sqrt{x})+^{50}C_2(2\sqrt{x})^2.....$$

    we need to find sum of even forms, so

    Put $$\sqrt{x}=1 \Longrightarrow (1-2)^{50}=1=^{50}C_0-^{50}C_1(2)+^{50}C_2(2)^2.........(1)$$
     
    and $$\sqrt{x}=-1 \Longrightarrow (1+2)^{50}=3^{50}=^{50}C_0+^{50}C_12+^{50}C_2(2)^2.......(2)$$

    Adding (1) and (2) we get,

    $$ 3^{50}+1=2(^{50}C_0+^{50}C_2(2)^2+........)$$

    $$\Rightarrow (^{50}C_0+^{50}C_2(2)^2+........)=\cfrac{1}{2}(1+3^{50})$$
  • Question 2
    1 / -0
    The value of $$\displaystyle \sum_{r = 1}^{15} r^{2} \left (\dfrac {^{15}C_{r}}{^{15}C_{r - 1}}\right )$$ is equal to:
    Solution
    $$\displaystyle \sum_{r = 1}^{15} r^{2} \left (\dfrac {^{15}C_{r}}{^{15}C_{r - 1}}\right )$$

    $$\Rightarrow \left (\dfrac {^{n}C_{r}}{^{n}C_{r - 1}}\right ) = \dfrac{n-r+1}{r}$$

    $$\displaystyle \sum_{r = 1}^{15} r^{2} \left (\dfrac {^{15}C_{r}}{^{15}C_{r - 1}}\right ) = \displaystyle \sum_{r = 1}^{15} r^{2} \left (\dfrac {n-r+1}{r}\right )\\$$

    $$\sum_{r = 1}^{15} (nr-r^2+r) = \sum_{r = 1}^{15} ((n+1)r-r^2)$$

    $$ \sum_{r = 1}^{15} (nr-r^2+r) = \dfrac{n(n+1)^2}{2}- \dfrac{n(n+1)(2n+1)}{6}$$

    Put $$n=15,$$ we get 

    $$\displaystyle \sum_{r = 1}^{15} r^{2} \left (\dfrac {^{15}C_{r}}{^{15}C_{r - 1}}\right ) = 680$$
  • Question 3
    1 / -0
    Let $$(x + 10)^{50} +  (x - 10)^{50} = a_0 + a_1x + a_2x^2 + .... + a_{50} x^{50}$$, for all $$x \in R$$ then $$\dfrac{a_2}{a_0}$$ is equal to:-
    Solution
    Given:- $${\left( x + 10 \right)}^{50} + {\left( x - 10 \right)}^{50} = {a}_{0} + {a}_{1} x + {a}_{2} {x}^{2} + ........... + {a}_{50} {x}^{50}$$
    To find:- $$\cfrac{{a}_{2}}{{a}_{0}} = \cfrac{\text{coefficient of } {x}^{2}}{\text{Coefficient of } {x}^{0}}$$
    As we know that, the general term in an expansion $${\left( a + b \right)}^{n}$$ is given as,
    $${T}_{r + 1} = {^{n}{C}_{r}} {\left( a \right)}^{n - r} {\left( b \right)}^{r}$$
    Now,
    General term of $${\left( x + 10 \right)}^{50}$$-
    Here,
    $$a = x, b = 10$$
    $${T}_{r + 1} = {^{50}{C}_{r}}{\left( x \right)}^{50 - r} {\left( 10 \right)}^{r}$$
    For coefficient of $${x}^{2}$$-
    $$50 - r = 2 \Rightarrow r = 48$$
    $${T}_{48 + 1} = {^{50}{C}_{48}} {\left( x \right)}^{50 - 48} {\left( 10 \right)}^{48}$$
    $${T}_{49} = {^{50}{C}_{48}} {\left( 10 \right)}^{48} {x}^{2}$$
    For coeficient of $${x}^{0}$$-
    $$50 - r = 0 \Rightarrow r = 50$$
    $${T}_{50 + 1} = {^{50}{C}_{50}} {\left( x \right)}^{50 - 50} {\left( 10 \right)}^{50}$$
    $${T}_{51} = {^{50}{C}_{50}} {\left( 10 \right)}^{50} {x}^{0}$$
    Now,
    General term of $${\left( x + \left( -10 \right) \right)}^{50}$$-
    Here,
    $$a = x, b = -10$$
    $${T}_{r + 1} = {^{50}{C}_{r}}{\left( x \right)}^{50 - r} {\left( -10 \right)}^{r}$$
    For coeficient of $${x}^{2}$$-
    $$50 - r = 2 \Rightarrow r = 48$$
    $${T}_{48 + 1} = {^{50}{C}_{48}} {\left( x \right)}^{50 - 48} {\left( -10 \right)}^{48}$$
    $${T}_{49} = {^{50}{C}_{48}} {\left( 10 \right)}^{48} {x}^{2}$$
    For coeficient of $${x}^{0}$$-
    $$50 - r = 0 \Rightarrow r = 50$$
    $${T}_{50 + 1} = {^{50}{C}_{50}} {\left( x \right)}^{50 - 50} {\left( -10 \right)}^{50}$$
    $${T}_{51} = {^{50}{C}_{50}} {\left( 10 \right)}^{50} {x}^{0}$$
    Now from the given expansion,
    $${a}_{2} = {^{50}{C}_{48}} {\left( 10 \right)}^{48} + {^{50}{C}_{48}} {\left( 10 \right)}^{48} = {^{50}{C}_{48}} \left( {\left( 10 \right)}^{48} + {\left( 10 \right)}^{48} \right)$$
    $${a}_{0} = {^{50}{C}_{50}} {\left( 10 \right)}^{50} + {^{50}{C}_{50}} {\left( 10 \right)}^{50} = {^{50}{C}_{50}} \left( {\left( 10 \right)}^{50} + {\left( 10 \right)}^{50} \right)$$
    Now,
    $$\cfrac{{a}_{2}}{{a}_{0}} = \cfrac{{^{50}{C}_{48}} \left( {\left( 10 \right)}^{48} + {\left( 10 \right)}^{48} \right)}{{^{50}{C}_{50}} \left( {\left( 10 \right)}^{50} + {\left( 10 \right)}^{50} \right)}$$
    As we know that,
    $${^{n}{C}_{r}} = \cfrac{n!}{r! \left( n - r \right)!}$$
    Therefore,
    $$\cfrac{{a}_{2}}{{a}_{0}} = \cfrac{50 \times 49}{2} \times \left( \cfrac{{10}^{48}}{{10}^{50}}\right)$$
    $$\Rightarrow \cfrac{{a}_{2}}{{a}_{0}} = \cfrac{49}{4}= 12.25$$
  • Question 4
    1 / -0
    The coefficient of $$x^{18}$$ in the product $$(1+x)(1-x)^{10}(1+x+x^2)^9$$ is?
    Solution
    $$(1+x)(1-x)^{10}(1+x+x^2)^9$$
    $$(1-x^2)(1-x^3)^9$$
    $${^{9}C_6}=84$$.
  • Question 5
    1 / -0
    Let $$s_n = 1 + q + q^2 + ................. + q^n$$ and 
    $$T_n = 1 + \left(\dfrac{q + 1}{2}\right) + \left(\dfrac{q + 1}{2}\right)^2 +......... \left(\dfrac{q + 1}{2}\right)^n$$ 
     where q is a real number and q $$\neq$$ 1.
    If $$^{101}C_1 + ^{101}{C_2}.S_{1} +...... + ^{101}C_{101}.S_{100} = \alpha T_{100}, then\,\,\, \alpha$$ is equal to :-
    Solution

  • Question 6
    1 / -0
    If $$(2+\dfrac {x}{3})^{55}$$ is expanded in the ascending powers of $$x$$ and the coefficients of powers of $$x$$ in two consecutive terms of the expansion are equal, then these terms are :
    Solution

    Coefficient of $$x^r $$ and $$x^{r+1} $$ are equal.


    Coefficient of $$T_{r+1} =$$ Coefficient of $$T_{r+2} $$


    $$\Rightarrow\displaystyle { ^{ 55 }C }_{ r }{ (2) }^{ 55-r }{ \left(\dfrac  { 1 }{ 3 } \right) }^{ r }={ ^{ 55 }C }_{ r+1 }{ (2) }^{ 54-r }{ \left(\dfrac  { 1 }{ 3 } \right) }^{ r+1 }$$          

           .
    $$\dfrac  { 55! }{ (55-r)!r! } (2)=\dfrac  { 55! }{ (54-r)!(r+1)! } \dfrac  { 1 }{ 3 } $$


    $$\Rightarrow 6(r+1) = 55-r$$


    $$\Rightarrow r =7$$


    So, the terms will be $$8^{th}$$ and $$9^{th}$$

  • Question 7
    1 / -0
    If the sum of odd numbered terms and the sum of even numbered terms in the expansion of $$(x + a)^{n}$$ are $$A$$ and $$B$$ respectively, then the value of $$(x^{2} - a^{2})^{n}$$ is
    Solution
    $$(x + a)^{n} = ^{n}C_{0} x^{n} + ^{n}C_{1} x^{n - 1}a + ^{n}C_{2} x^{n - 2}a^{2} + ^{n}C_{3} x^{n - 3} a^{3} + ^{n}C_{4}x^{n - 4} a^{4} + .....$$
    $$= (^{n}C_{0}x^{n} + ^{n}C_{2}x^{n - 2}a^{2} + ^{n}C_{4} x^{n - 4} a^{4} + .....) + (^{n}C_{1}x^{n - 1}a + ^{n}C_{3} x^{n - 3}a^{3} + ^{n}C_{5} x^{n - 5}a^{5}) + ....$$
    $$= A + B$$     .... (1)
    Similarly, $$(x - a)^{n} = A - B$$     .... (2)
    Multiplying eqns. (1) and (2), we get
    $$(x^{2} - a^{2})^{n} = A^{2} - B^{2}$$
  • Question 8
    1 / -0
    The coefficients of the $$ (3r)^{ th}$$ term and the $$(r + 2)^{ th}$$ term in the expansion $$(1 + x)^{2n}$$ are equal, then :
    Solution
    The coefficients of $$(3r)$$ and $$(r + 2)$$ terms in the expansion $$(1 + x)^{2n}$$ are same.
    So, $$^{2n}C_{(3r - 1)} = ^{2n}C_{(r + 1)}$$
    As we know that in general, $$^{n}C_{r} = ^{n}C_{n - r}, $$
    $$\Rightarrow 3r - 1 + r + 1 = 2n$$
    i.e. $$4r = 2n$$ or $$n = 2r$$
  • Question 9
    1 / -0
    The number of rational terms in the expansion of $$(9^{1/4} + 8^{1/6})^{1000}$$ is:
    Solution
    The general term in the expansion of $$(9^{1/4} + 8^{1/6})^{1000}$$ is
    $$T_{r+1}={}^{1000}C_r\left (9^{\frac {1}{4}}\right )^{1000-r}\left (8^{\frac {1}{6}}\right )^r$$
    $$={}^{1000}C_r 3^{\frac {1000-r}{2}} 2^{\frac {1}{2}}$$
    The above term will be rational if exponent of 3 and 2 are integers.
    It means $$\dfrac {1000-r}{2}$$ and $$\dfrac {r}{2}$$ must be integers
    The possible set of values of $$r$$ is $$\left \{0, 2, 4, ...., 1000\right \}$$
    Hence, number of rational terms is $$501$$.
  • Question 10
    1 / -0
    In the expansion of $$(\sqrt 2+\sqrt [3]{5})^{20}$$ the number of rational terms will be:
    Solution
    Given 
    $$(\sqrt{2}+\sqrt[3]{5})^{20}$$

    General term of given expamsion 
    $$T_{r+1}=\displaystyle^{20}C_{r}(\sqrt{2})^{20-r}(\sqrt[3]{5})^r$$

    $$T_{r+1}=\displaystyle^{20}C_{r}(2)^{\dfrac{20-r}{2}}(5)^{\dfrac{r}{3}}$$

    Now, $$T_{r+1}$$ be rational if $$\dfrac{20-r}{2}$$ and $$\dfrac{r}{3}$$ are integers
    Hence $$20-r$$ Should be multiple of $$2$$ and $$r$$ should be multiple of $$3$$ where $$0\le r\le 20$$
    Hence possible value of $$r=0,3,6,9,12,15,18$$
    $$20-r=20,17,14,11,8,5,2$$

    $$20-r$$ should be multiple of $$2$$
    Hence $$20-r=20,14,8,2$$
    Hence possible rational terms are $$4$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now