Self Studies

Sequences and Series Test - 37

Result Self Studies

Sequences and Series Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The sum to the first n terms of the series  $$\dfrac{1}{2} + \dfrac{3}{4} + \dfrac{7}{8} + \dfrac{{15}}{{16}} + {\rm{ }} \ldots $$ is $$9 + {2^{ - 10}}$$.  The value of n is
    Solution
    $$\dfrac{1}{2}+\dfrac{3}{4}+\dfrac{7}{8}+\dfrac{15}{16}+........$$

    $$=\left ( 1-\dfrac{1}{2} \right )+\left ( 1-\dfrac{1}{4} \right )+\left ( 1-\dfrac{1}{8} \right)+....$$

    $$=(1+1+1+.......upto\; n\; terms)-\left ( \dfrac{1}{2} +\dfrac{1}{4}+\dfrac{1}{8}+.....n\; terms\right )$$

    $$=n-\left [ \dfrac{\dfrac{1}{2}\left \{ 1-(\dfrac{1}{2})^{n} \right \}}{1-\dfrac{1}{2}} \right ]$$

    $$=n-1+2^{-n}$$

    Now,

    $$n-1+2^{-n}=9+2^{-10}$$

    $$\Rightarrow n=10$$
  • Question 2
    1 / -0
    $$A = (2 + 1)({2^2} + 1)({2^4} + 1).....\left( {{2^{2016}} + 1} \right)$$. The value of $${\left( {A + 1} \right)^{\frac{1}{{2016}}}}$$ is
    Solution
    $$A=(2+1)(2^2+1)(2^4+1)(2^8+1).....(2^{2016}+1)$$
    $$A=(2-1) (2+1) (2^2+1)(2^4+1)(2^8+1)....(2^{2016}+1)$$
    $$A=(2^2-1)(2^2+1)(2^4+1)......(2^{2016}+1)$$
    Further simplification gives
    $$A=2^{4032}-1$$
    $$\Rightarrow \ A+1=2^{4032}$$
    $$\Rightarrow \ (A+1)^{1/2016} =(2^{4032})^{1/2016}$$
    $$=2^2$$
    $$=4$$
  • Question 3
    1 / -0
    The value of $$S=\sum _{ k=1 }^{ 6 }{ \left( \sin { \dfrac { 2\pi k }{ 7 }  } -i\cos { \dfrac { 2\pi k }{ 7 }  }  \right)  }$$ ?
    Solution
    $$ sin \dfrac{2 \pi k}{7} - i cos\dfrac{2 \pi k}{7}$$
    $$ = -i \left ( cos\dfrac{2\pi k}{7}+i sin \dfrac{2 \pi k}{7} \right )$$
    $$ = -ie^{2\pi k/7i}$$
    $$ \displaystyle \Rightarrow S = \sum_{k=1}^{6} -i\left ( e^{2\pi k/i} \right )$$
    $$\displaystyle = -i \left ( \sum_{k=1}^{6} e^{i2\pi k/7} \right )$$
    $$ = -i $$ [sum of roots of the equation
    $$ x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+1 = 0].$$
    $$ = -i \left ( -1 \right )$$
    $$ = i $$

  • Question 4
    1 / -0
    If $$P,\,Q$$ be two arithmetic means between $$\dfrac{1}{3}$$ and $$\dfrac{1}{24}$$, then their value are 
    Solution
    P and Q are the arithmetic means between $$\dfrac{1}{3} $$ and $$\dfrac{1}{24}$$

    So the resulting sequence formed an AP
     $$\dfrac{1}{3},P,Q, \dfrac{1}{24}$$ are in AP

    $$\Rightarrow a_4=a+(4-1)d$$
    $$\Rightarrow\dfrac{1}{24}=\dfrac{1}{3}+(4-1)d$$

    $$\Rightarrow \dfrac{-7}{24}=3d$$

    $$\Rightarrow d=\dfrac{-7}{72}$$

    $$\therefore  P=a+d=\dfrac{1}{3}+\dfrac{-7}{72}$$

                             =$$\dfrac{24-7}{72}$$

                        =$$\dfrac{17}{72}$$

    and $$Q=a+2d=\dfrac{1}{3}+\dfrac{-14}{72}$$

          =$$\dfrac{24-14}{72}$$

         =$$\dfrac{5}{36}$$
  • Question 5
    1 / -0
    If $$\dfrac{1}{x (x + 1) (x + 2)....(x + n)} = \dfrac{A_0}{x} + \dfrac{A_1}{x + 1} + \dfrac{A_2}{x + 2} + .... + \dfrac{A_n}{x + n} $$, then $$ A_r$$ $$=$$
  • Question 6
    1 / -0
    What is the sum of the series $$\dfrac{1}{{{3^2} - 4}} + \dfrac{1}{{{7^2} - 4}} + \dfrac{1}{{{{11}^2} - 4}} + ..... + \dfrac{1}{{{{39}^2} - 4}}$$
    Solution
    $$\begin{array}{l}\dfrac{1}{{{3^2} - 4}} + \dfrac{1}{{{7^2} - 4}} + \dfrac{1}{{{{11}^2} - 4}} + ..... + \dfrac{1}{{{{39}^2} - 4}}\\ = \dfrac{1}{{\left( {3 - 2} \right)\left( {3 + 2} \right)}} + \dfrac{1}{{\left( {7 - 2} \right)\left( {7 + 2} \right)}} + \dfrac{1}{{\left( {11 - 2} \right)\left( {11 + 2} \right)}} + ..... + \dfrac{1}{{\left( {39 - 4} \right)\left( {39 + 4} \right)}}\\ = \dfrac{1}{4}\left[ {\dfrac{{5 - 1}}{{5 \times 1}} + \dfrac{{9 - 5}}{{9 \times 5}} + \dfrac{{13 - 9}}{{13 \times 9}} + .....} \right]\\ = \dfrac{1}{4}\left[ {\dfrac{{5 - 1}}{{5 \times 1}} + \dfrac{{9 - 5}}{{9 \times 5}} + \dfrac{{13 - 9}}{{13 \times 9}} + .....} \right]\\ = \dfrac{1}{4}\left[ {1 - \dfrac{1}{5} + \dfrac{1}{5} - \dfrac{1}{9} + \dfrac{1}{9} - \dfrac{1}{{13}} + .........\dfrac{1}{{37}} - \dfrac{1}{{41}}} \right]\\ = \dfrac{1}{4}\left[ {1 - \dfrac{1}{{41}}} \right] = \dfrac{{10}}{{41}}\end{array}$$
  • Question 7
    1 / -0
    Number of identical terms in the sequence $$2, 5, 8, 11,$$___ upto $$100$$ terms and $$3, 5, 7, 9, 11$$____ upto $$100$$ terms are
    Solution
    Fierst series: $$2, 5, 8, 11.........$$
    $$a_1 =2;\ d=3;\ n=100$$
    $$l=20(100-1)^*5=2+99^*3=2+297=299$$
    so, series $$=2, 5, 8, 11,.....,197, 197,200,203,....,299$$
    second series; $$3, 5, 9, 11,.....$$
    $$a_1=3;\ d=2;\ n=100$$
    $$l=3+(100-1)^*2=3+99^*2=3+198=201$$
    so series $$=3, 5, 7, 9, 11, ...., 201$$ 
    series having similar terms; $$5, 11, 17, ....., 197$$
    $$a_1=5;\ d=6;\ l=197$$
    $$l=a_1+(n-1)d$$
    $$197=5+(n-1)6$$
    $$192/6=n-1$$
    $$32+1=n$$
    $$n=33$$
  • Question 8
    1 / -0
    Find the value of ?. 

    Solution
    $${\left( {3 + 1} \right)^2} = {\left( 4 \right)^2} = 16$$

    $${\left( {15 + 6} \right)^2} = {\left( {21} \right)^2} = 441$$

    $${\left( {10 + 5} \right)^2} = {\left( {15} \right)^2} = 225$$

    $$so,\,{\left( {12 + 13} \right)^2} = {\left( {25} \right)^2} = 625$$

    therefore the answer is $$625$$
  • Question 9
    1 / -0
    The value of the expression $$\left(\dfrac{1}{2^2 -1}\right) + \left(\dfrac{1}{4^2 -1}\right) + \left(\dfrac{1}{6^2 -1}\right) + ... + \left(\dfrac{1}{20^2 -1}\right)$$ is
    Solution
    $$n$$ th term in the given series can be written as 

    $$\dfrac{1}{(2n)^{2}-1}$$

    $$=\dfrac{1}{(2n+1)(2n-1)}$$

    $$=\dfrac{1}{2}\left \{ \dfrac{1}{2n-1} -\dfrac{1}{2n+1}\right \}$$

    So, the given series can be written as

    $$\dfrac{1}{2}\left ( 1-\dfrac{1}{3} \right )+\dfrac{1}{2}\left ( \dfrac{1}{3} -\dfrac{1}{5}\right )+\dfrac{1}{2}\left ( \dfrac{1}{5} -\dfrac{1}{7}\right )+..............\dfrac{1}{2}\left ( \dfrac{1}{19} -\dfrac{1}{21}\right )$$

    $$=\dfrac{1}{2}\left ( 1-\dfrac{1}{21} \right )$$

    $$=\dfrac{10}{21}$$
  • Question 10
    1 / -0
    $$67,84,95,.,133,158$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now