Self Studies

Sequences and Series Test - 37

Result Self Studies

Sequences and Series Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The sum to the first n terms of the series  12+34+78+1516+\dfrac{1}{2} + \dfrac{3}{4} + \dfrac{7}{8} + \dfrac{{15}}{{16}} + {\rm{ }} \ldots is 9+2109 + {2^{ - 10}}.  The value of n is
    Solution
    12+34+78+1516+........\dfrac{1}{2}+\dfrac{3}{4}+\dfrac{7}{8}+\dfrac{15}{16}+........

    =(112)+(114)+(118)+....=\left ( 1-\dfrac{1}{2} \right )+\left ( 1-\dfrac{1}{4} \right )+\left ( 1-\dfrac{1}{8} \right)+....

    =(1+1+1+.......upto  n  terms)(12+14+18+.....n  terms)=(1+1+1+.......upto\; n\; terms)-\left ( \dfrac{1}{2} +\dfrac{1}{4}+\dfrac{1}{8}+.....n\; terms\right )

    =n[12{1(12)n}112]=n-\left [ \dfrac{\dfrac{1}{2}\left \{ 1-(\dfrac{1}{2})^{n} \right \}}{1-\dfrac{1}{2}} \right ]

    =n1+2n=n-1+2^{-n}

    Now,

    n1+2n=9+210n-1+2^{-n}=9+2^{-10}

    n=10\Rightarrow n=10
  • Question 2
    1 / -0
    A=(2+1)(22+1)(24+1).....(22016+1)A = (2 + 1)({2^2} + 1)({2^4} + 1).....\left( {{2^{2016}} + 1} \right). The value of (A+1)12016{\left( {A + 1} \right)^{\frac{1}{{2016}}}} is
    Solution
    A=(2+1)(22+1)(24+1)(28+1).....(22016+1)A=(2+1)(2^2+1)(2^4+1)(2^8+1).....(2^{2016}+1)
    A=(21)(2+1)(22+1)(24+1)(28+1)....(22016+1)A=(2-1) (2+1) (2^2+1)(2^4+1)(2^8+1)....(2^{2016}+1)
    A=(221)(22+1)(24+1)......(22016+1)A=(2^2-1)(2^2+1)(2^4+1)......(2^{2016}+1)
    Further simplification gives
    A=240321A=2^{4032}-1
     A+1=24032\Rightarrow \ A+1=2^{4032}
     (A+1)1/2016=(24032)1/2016\Rightarrow \ (A+1)^{1/2016} =(2^{4032})^{1/2016}
    =22=2^2
    =4=4
  • Question 3
    1 / -0
    The value of S=k=16(sin2πk7 icos2πk7  ) S=\sum _{ k=1 }^{ 6 }{ \left( \sin { \dfrac { 2\pi k }{ 7 }  } -i\cos { \dfrac { 2\pi k }{ 7 }  }  \right)  } ?
    Solution
    sin2πk7icos2πk7 sin \dfrac{2 \pi k}{7} - i cos\dfrac{2 \pi k}{7}
    =i(cos2πk7+isin2πk7) = -i \left ( cos\dfrac{2\pi k}{7}+i sin \dfrac{2 \pi k}{7} \right )
    =ie2πk/7i = -ie^{2\pi k/7i}
    S=k=16i(e2πk/i) \displaystyle \Rightarrow S = \sum_{k=1}^{6} -i\left ( e^{2\pi k/i} \right )
    =i(k=16ei2πk/7)\displaystyle = -i \left ( \sum_{k=1}^{6} e^{i2\pi k/7} \right )
    =i = -i [sum of roots of the equation
    x6+x5+x4+x3+x2+1=0]. x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+1 = 0].
    =i(1) = -i \left ( -1 \right )
    =i = i

  • Question 4
    1 / -0
    If P,QP,\,Q be two arithmetic means between 13\dfrac{1}{3} and 124\dfrac{1}{24}, then their value are 
    Solution
    P and Q are the arithmetic means between 13\dfrac{1}{3} and 124\dfrac{1}{24}

    So the resulting sequence formed an AP
     13,P,Q,124\dfrac{1}{3},P,Q, \dfrac{1}{24} are in AP

    a4=a+(41)d\Rightarrow a_4=a+(4-1)d
    124=13+(41)d\Rightarrow\dfrac{1}{24}=\dfrac{1}{3}+(4-1)d

    724=3d\Rightarrow \dfrac{-7}{24}=3d

    d=772\Rightarrow d=\dfrac{-7}{72}

     P=a+d=13+772\therefore  P=a+d=\dfrac{1}{3}+\dfrac{-7}{72}

                             =24772\dfrac{24-7}{72}

                        =1772\dfrac{17}{72}

    and Q=a+2d=13+1472Q=a+2d=\dfrac{1}{3}+\dfrac{-14}{72}

          =241472\dfrac{24-14}{72}

         =536\dfrac{5}{36}
  • Question 5
    1 / -0
    If 1x(x+1)(x+2)....(x+n)=A0x+A1x+1+A2x+2+....+Anx+n\dfrac{1}{x (x + 1) (x + 2)....(x + n)} = \dfrac{A_0}{x} + \dfrac{A_1}{x + 1} + \dfrac{A_2}{x + 2} + .... + \dfrac{A_n}{x + n} , then Ar A_r ==
  • Question 6
    1 / -0
    What is the sum of the series 1324+1724+11124+.....+13924\dfrac{1}{{{3^2} - 4}} + \dfrac{1}{{{7^2} - 4}} + \dfrac{1}{{{{11}^2} - 4}} + ..... + \dfrac{1}{{{{39}^2} - 4}}
    Solution
    1324+1724+11124+.....+13924=1(32)(3+2)+1(72)(7+2)+1(112)(11+2)+.....+1(394)(39+4)=14[515×1+959×5+13913×9+.....]=14[515×1+959×5+13913×9+.....]=14[115+1519+19113+.........137141]=14[1141]=1041\begin{array}{l}\dfrac{1}{{{3^2} - 4}} + \dfrac{1}{{{7^2} - 4}} + \dfrac{1}{{{{11}^2} - 4}} + ..... + \dfrac{1}{{{{39}^2} - 4}}\\ = \dfrac{1}{{\left( {3 - 2} \right)\left( {3 + 2} \right)}} + \dfrac{1}{{\left( {7 - 2} \right)\left( {7 + 2} \right)}} + \dfrac{1}{{\left( {11 - 2} \right)\left( {11 + 2} \right)}} + ..... + \dfrac{1}{{\left( {39 - 4} \right)\left( {39 + 4} \right)}}\\ = \dfrac{1}{4}\left[ {\dfrac{{5 - 1}}{{5 \times 1}} + \dfrac{{9 - 5}}{{9 \times 5}} + \dfrac{{13 - 9}}{{13 \times 9}} + .....} \right]\\ = \dfrac{1}{4}\left[ {\dfrac{{5 - 1}}{{5 \times 1}} + \dfrac{{9 - 5}}{{9 \times 5}} + \dfrac{{13 - 9}}{{13 \times 9}} + .....} \right]\\ = \dfrac{1}{4}\left[ {1 - \dfrac{1}{5} + \dfrac{1}{5} - \dfrac{1}{9} + \dfrac{1}{9} - \dfrac{1}{{13}} + .........\dfrac{1}{{37}} - \dfrac{1}{{41}}} \right]\\ = \dfrac{1}{4}\left[ {1 - \dfrac{1}{{41}}} \right] = \dfrac{{10}}{{41}}\end{array}
  • Question 7
    1 / -0
    Number of identical terms in the sequence 2,5,8,11,2, 5, 8, 11,___ upto 100100 terms and 3,5,7,9,113, 5, 7, 9, 11____ upto 100100 terms are
    Solution
    Fierst series: 2,5,8,11.........2, 5, 8, 11.........
    a1=2; d=3; n=100a_1 =2;\ d=3;\ n=100
    l=20(1001)5=2+993=2+297=299l=20(100-1)^*5=2+99^*3=2+297=299
    so, series =2,5,8,11,.....,197,197,200,203,....,299=2, 5, 8, 11,.....,197, 197,200,203,....,299
    second series; 3,5,9,11,.....3, 5, 9, 11,.....
    a1=3; d=2; n=100a_1=3;\ d=2;\ n=100
    l=3+(1001)2=3+992=3+198=201l=3+(100-1)^*2=3+99^*2=3+198=201
    so series =3,5,7,9,11,....,201=3, 5, 7, 9, 11, ...., 201 
    series having similar terms; 5,11,17,.....,1975, 11, 17, ....., 197
    a1=5; d=6; l=197a_1=5;\ d=6;\ l=197
    l=a1+(n1)dl=a_1+(n-1)d
    197=5+(n1)6197=5+(n-1)6
    192/6=n1192/6=n-1
    32+1=n32+1=n
    n=33n=33
  • Question 8
    1 / -0
    Find the value of ?. 

    Solution
    (3+1)2=(4)2=16{\left( {3 + 1} \right)^2} = {\left( 4 \right)^2} = 16

    (15+6)2=(21)2=441{\left( {15 + 6} \right)^2} = {\left( {21} \right)^2} = 441

    (10+5)2=(15)2=225{\left( {10 + 5} \right)^2} = {\left( {15} \right)^2} = 225

    so,(12+13)2=(25)2=625so,\,{\left( {12 + 13} \right)^2} = {\left( {25} \right)^2} = 625

    therefore the answer is 625625
  • Question 9
    1 / -0
    The value of the expression (1221)+(1421)+(1621)+...+(12021)\left(\dfrac{1}{2^2 -1}\right) + \left(\dfrac{1}{4^2 -1}\right) + \left(\dfrac{1}{6^2 -1}\right) + ... + \left(\dfrac{1}{20^2 -1}\right) is
    Solution
    nn th term in the given series can be written as 

    1(2n)21\dfrac{1}{(2n)^{2}-1}

    =1(2n+1)(2n1)=\dfrac{1}{(2n+1)(2n-1)}

    =12{12n112n+1}=\dfrac{1}{2}\left \{ \dfrac{1}{2n-1} -\dfrac{1}{2n+1}\right \}

    So, the given series can be written as

    12(113)+12(1315)+12(1517)+..............12(119121)\dfrac{1}{2}\left ( 1-\dfrac{1}{3} \right )+\dfrac{1}{2}\left ( \dfrac{1}{3} -\dfrac{1}{5}\right )+\dfrac{1}{2}\left ( \dfrac{1}{5} -\dfrac{1}{7}\right )+..............\dfrac{1}{2}\left ( \dfrac{1}{19} -\dfrac{1}{21}\right )

    =12(1121)=\dfrac{1}{2}\left ( 1-\dfrac{1}{21} \right )

    =1021=\dfrac{10}{21}
  • Question 10
    1 / -0
    67,84,95,.,133,15867,84,95,.,133,158
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now