Self Studies

Sequences and Series Test - 62

Result Self Studies

Sequences and Series Test - 62
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$40280625, 732375, 16275, 465, 18.6, 1.24,?$$
    Solution
    $$40280625, 732375,16275,465,18.6,1.24$$
    $$\cfrac{40280625}{732375}=55$$
    $$\cfrac{732375}{16275}=45$$
    $$\cfrac{16275}{465}=35$$
    $$\cfrac{465}{18.6}=25$$
    $$\cfrac{18.6}{1.24}=15$$
    $$\cfrac{1.24}{x}=5$$
    $$x=0.248$$

  • Question 2
    1 / -0
    $$435, 354, 282, 219, 165, ?$$
    Solution
    $$\therefore 165-45=x$$
    $$x=120$$.

  • Question 3
    1 / -0
    For a positive integer n, let $$f_n(\theta)=(2\cos \theta+1)(2\cos \theta -1)(2\cos 2\theta -1)(2\cos (2^2)\theta -1)......(2\cos (2^{n-1})\theta -1)$$. Which one of the following hold(s) not good?
    Solution
    $$\begin{array}{l} f\left( \theta  \right) =\left( { 2\cos  \theta +1 } \right) \left( { 2\cos  \theta -1 } \right) \left( { 2\cos  2\theta -1 } \right) \left( { 2\cos  \left( { { 2^{ 2 } } } \right) \theta -1 } \right) ......\left( { 2\cos  \left( { { 2^{ n-1 } } } \right) \theta -1 } \right) . \\ =\left( { 2\cos  \theta +1 } \right) +\left( { 2\cos  \theta -1 } \right) ....\left( { 2\cos { 2^{ n-1 } } \theta +1 } \right)  \\ Now, \\ { f_{ n } }\left( \theta  \right) =2\cos { 2^{ n } } \theta +1 \\ { f_{ 2 } }\left( { \frac { \pi  }{ 6 }  } \right) =2\cos  \left( { 4\times \frac { \pi  }{ 6 }  } \right) +1 \\ =2\cos  \frac { { 2\pi  } }{ 3 } +1=0 \\ { f_{ 3 } }\left( { \frac { \pi  }{ 8 }  } \right) =2\cos  \left( { 8\times \frac { \pi  }{ 8 }  } \right) +1=-1 \\ { f_{ 4 } }\left( { \frac { \pi  }{ { 32 } }  } \right) =2\cos  \left( { 16\times \frac { \pi  }{ { 32 } }  } \right) +1=1 \\ { f_{ 5 } }\left( { \frac { \pi  }{ { 128 } }  } \right) =2\cos  \left( { 32\times \frac { \pi  }{ { 128 } }  } \right) +1=1+\sqrt { 2 }  \\ Hence,\, the\, option\, D\, is\, the\, correct\, answer. \end{array}$$
  • Question 4
    1 / -0
    If $$x=\sqrt 1+\dfrac{1}{{1}^{2}}+\dfrac{1}{{2}^{2}}+\sqrt 1+\dfrac{1}{{2}^{2}}+\dfrac{1}{{3}^{2}}+\sqrt 1+\dfrac{1}{{2019}^{2}}+\dfrac{1}{{2020}^{2}}$$ then $$4040(2020-x)$$
    Solution

  • Question 5
    1 / -0
    If $$a_{k}=\dfrac{1}{K(K+1)}$$ for $$K=1, 2, 3,.....n,$$ then $$\left(\sum_{k=1}^{n}{a_{k}}\right)^{2}=$$
    Solution
    $$\begin{array}{l} { a_{ k } }=\dfrac { 1 }{ { k\left( { k+1 } \right)  } } =\dfrac { 1 }{ k } -\dfrac { 1 }{ { k+1 } }  \\ { \left( { \sum  _{ k=1 }^{ n }{ { a_{ x } } } } \right) ^{ 2 } } \\ { \left( { \sum  _{ k=1 }^{ n }{ \left( { \dfrac { 1 }{ k } -\dfrac { 1 }{ { k+1 } }  } \right)  } } \right) ^{ 2 } } \\ =\left( { 1-\dfrac { 1 }{ 2 }  } \right) +\left( { \dfrac { 1 }{ 2 } -\dfrac { 1 }{ 3 }  } \right) \, \, \, \, \, \left( { \dfrac { 1 }{ n } \dfrac { { -1 } }{ { n+1 } }  } \right)  \\ ={ \left( { 1-\dfrac { 1 }{ { n+1 } }  } \right) ^{ 2 } } \\ ={ \left( { \dfrac { { n+1-1 } }{ { n+1 } }  } \right) ^{ 2 } } \\ =\dfrac { { { n^{ 2 } } } }{ { { { \left( { n+1 } \right)  }^{ 2 } } } }  \end{array}$$

    Hence, this is the answer.
  • Question 6
    1 / -0
    If $${ x }_{ 1 },{ x }_{ 2 },{ x }_{ 3 },......,{ x }_{ n }\quad $$ are the roots of $$\quad { x }^{ n }+ax+b=0$$. then the value of $$\quad \left( { x }_{ 1 }-{ x }_{ 2 } \right) \left( { x }_{ 1 }-{ x }_{ 3 } \right) \left( { x }_{ 1 }-{ x }_{ 4 } \right) ......\left( { x }_{ 1 }-{ x }_{ n } \right) $$
    Solution

  • Question 7
    1 / -0
    $$\dfrac { { C }_{ 1 } }{ { C }_{ 0 } } +2\dfrac { { C }_{ 2 } }{ { C }_{ 1 } } +3\frac { { C }_{ 3 } }{ { C }_{ 2 } } +......+\dfrac { n{ C }_{ n } }{ { C }_{ n-1 } } $$ equals 
    Solution

  • Question 8
    1 / -0
    The value of $$2+\dfrac{1}{2+\dfrac{1}{2+.....\infty}}$$ is :
    Solution
    $$\begin{array}{l} 2+\dfrac { 1 }{ { 2+.... } }  \\ x=2+\dfrac { 1 }{ x }  \\ x-2-\dfrac { 1 }{ x } =0 \\ { x^{ 2 } }-2x-1=0 \\ \dfrac { { x=+2\pm \sqrt { 4+4 }  } }{ 2 } =\dfrac { { 2\pm 2\sqrt { 2 }  } }{ 2 }  \\ =1\pm \sqrt { 2 }  \end{array}$$
  • Question 9
    1 / -0
    If $$\left( 1+x+{ x }^{ 2 } \right) ={ a }_{ 0 }+{ a }_{ 1 }x+{ a }_{ 2 }{ x }^{ 2 }+........{ a }_{ 2n }{ x }^{ 2n }$$, then the value of $${ a }_{ 0 }+{ a }_{ 3 }+{ a }_{ 6 }+.....$$ is 
  • Question 10
    1 / -0
    The sum of the infinite series $$\cot { ^{ 1 } } \left( \dfrac { 7 }{ 4 } \right) +\cot { ^{ -1 }\left( \dfrac { 19 }{ 4 } \right) } +\cot { ^{ -1 }\left( \dfrac { 39 }{ 4 } \right) } +\cot { ^{ -1 }\left( \dfrac { 67 }{ 4 } \right) } +........\infty $$ is:
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now