For isothermal process,
$$PV = constant$$
$$for AB :$$
$$ \therefore { P }_{ A }{ V }_{ A }={ P }_{ B }{ V }_{ B }$$
$$\dfrac { { P }_{ A } }{ { P }_{ B } } = \dfrac { { V }_{ B } }{ { V }_{ A } } \longrightarrow (1)$$
$$for BC :$$
$${ P }_{ B }{ V }_{ B }^{ Y } = { P }_{ C }{ V }_{ C }^{ Y } \longrightarrow (2)$$
Substituting value of $$ { P }_{ B }$$ from $$ (1) \& (2)$$
$$\dfrac { { P }_{ A }{ V }_{ A } }{ { V }_{ B } } { V }_{ B }^{ Y } = { P }_{ C }{ V }_{ C }^{ Y }$$
$${ P }_{ A }{ V }_{ A }{ V }_{ B }^{ Y-1 } = { P }_{ C }{ V }_{ C }^{ Y } \longrightarrow (3)$$
$$for CD :$$
$${ P }_{ C }{ V }_{ C }= { P }_{ D }{ V }_{ D }$$
$$ \dfrac { { P }_{ C } }{ { P }_{ D } } = \dfrac { { V }_{ D } }{ { V }_{ C } } $$
$$for DA :$$
$$ { P }_{ D }{ V }_{ D }^{ Y } = { P }_{ A }{ V }_{ A }^{ Y }$$
$$ \dfrac { { V }_{ C }{ P }_{ C } }{ { V }_{ D } } { V }_{ D }^{ Y } ={ P }_{ A }{ V }_{ A }^{ Y }$$
$$ { P }_{ C }{ V }_{ C }{ V }_{ D } = { P }_{ A }{ V }_{ A }^{ Y } \longrightarrow (4)$$
$${ P }_{ A }{ V }_{ A }^{ Y } ={ P }_{ C }{ V }_{ C }{ V }_{ D }^{ Y-1 }$$ $${ P }_{ A }{ V }_{ A }{ V }_{ B }^{ Y-1 } = { P }_{ C }{ V }_{ C }^{ Y }$$
Dividing the two we get,
$$\dfrac { { P }_{ A }{ V }_{ A }^{ Y } }{ { P }_{ A }{ V }_{ A }{ V }_{ B }^{ Y-1 } } = \dfrac { { P }_{ C }{ V }_{ C }{ V }_{ D }^{ Y-1 } }{ { P }_{ C }{ V }_{ C }^{ Y } } $$
$$\dfrac { { V }_{ A }^{ Y-1 } }{ { V }_{ B }^{ Y-1 } } = \dfrac { { V }_{ D }^{ Y-1 } }{ { V }_{ C }^{ Y-1 } } $$
$$\dfrac { { V }_{ B }^{ Y-1 } }{ { V }_{ C }^{ Y-1 } } =\dfrac { { V }_{ A }^{ Y-1 } }{ { V }_{ D }^{ Y-1 } } $$
$${ (\dfrac { { V }_{ B } }{ { V }_{ C } } ) }^{ Y-1 }={ (\dfrac { { V }_{ A } }{ { V }_{ D } } ) }^{ Y-1 }$$
$$\dfrac { { V }_{ B } }{ { V }_{ C } } =\dfrac { { V }_{ A } }{ { V }_{ D } } $$
$$(A) = \dfrac { { V }_{ A } }{ { V }_{ D } }$$
ANSWER : A.