Self Studies

Thermodynamics Test - 67

Result Self Studies

Thermodynamics Test - 67
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A diatomic gas follows equation $$ PV^m = constant $$ during a process.what should be value of m such that its molar heat capacity during process = R?
    Solution

  • Question 2
    1 / -0
    A monatomic gas "undergoes a cycle consisting of two isothermals and two isobarics. The minimum and maximum temperatures of the gas during the cycle are $$ T_{1}=400 $$. K and $$ T_{2}  =800 \mathrm{K}, $$ respectively, and the ratio of maximum to minimum volume is 4

    The volume at $$ B $$ is

    Solution
     Process $$ C B $$ is done at minimum temperature, while process $$ D A $$ is done at maximum temperature. Process $$ A \rightarrow B $$ (isobaric)
    $$\dfrac{V_{A}}{V_{B}}=\dfrac{T_{A}}{T_{B}}=\dfrac{800}{400}=2$$
    hence $$ V_{B}=2 V_{0} $$
  • Question 3
    1 / -0
    A sample of ideal gas is expanded to twice its original volume of $$ 1 \mathrm{m}^{3} $$ in a quasi-static process for which $$ P= \alpha V^{2} $$ with $$ \alpha=3 \times 10^{5} \mathrm{Pa} / \mathrm{m}^{6} $$ as shown in Fig. $$ 2.113 . $$ Work done by the expanding gas is

    Solution
    Work done, $$ W=\int_{V_{1}}^{v_{2}} \alpha V^{2} d V $$

    where $$ \alpha=3 \times 10^{5} \mathrm{Pa} / \mathrm{m}^{6} $$

    $$ \Rightarrow \quad W=\left[\dfrac{\alpha V^{3}}{3}\right]_{V_{1}=1 \mathrm{m}^{3}}^{V_{2}=2 \mathrm{m}^{3}}=\left[\dfrac{3 \times 10^{5} V^{3}}{3}\right]_{V_{1}}^{V_{2}} $$

    $$ \Rightarrow \quad W=10^{5}\left(V_{2}^{3}-V_{1}^{3}\right) $$

    $$ V_{1}=1 \mathrm{m}^{3} \quad V_{2}=2 \mathrm{m}^{3} $$

    $$ W=10^{5}(8-1)=7 \times 10^{5} \mathrm{J} $$
  • Question 4
    1 / -0
    A cyclic process for 1 mole of an ideal gas is shown in Fig. 2.98 in the $$ V-T, $$ diagram. The work done in $$ A B, B C $$ and $$ C A $$, respectively, is

    Solution
     Process $$ A B $$ is isochoric; therefore

    $$W_{A B}=P \Delta V=0$$ Process $$ B C $$ is isothermal; therefore

    $$W_{B C}=R T_{2} \ln \left(\dfrac{V_{2}}{V_{1}}\right)$$

    Process $$ C A $$ is isobaric; therefore

    $$W_{C A}=P \Delta V=R \Delta T=R\left(T_{2}-T_{1}\right)$$
  • Question 5
    1 / -0
    A monatomic gas "undergoes a cycle consisting of two isothermals and two isobarics. The minimum and maximum temperatures of the gas during the cycle are $$ T_{1}=400 $$. K and $$ T_{2}  =800 \mathrm{K}, $$ respectively, and the ratio of maximum to minimum volume is 4

    The heat is extracted from the system in process

    Solution
     Process $$ C B $$ is done at minimum temperature, while process $$ D A $$ is done at maximum temperature. 
    Process $$ A \rightarrow B $$ (isobaric)
    $$\dfrac{V_{A}}{V_{B}}=\dfrac{T_{A}}{T_{B}}=\dfrac{800}{400}=2$$
    hence $$ V_{B}=2 V_{0} $$

    $$ B \rightarrow C (\text { isothermal }) $$ $$ C \rightarrow D $$ (isobaric)
    $$\dfrac{V_{D}}{V_{C}}=\dfrac{T_{D}}{T_{C}} \Rightarrow V_{D}=2 V_{0}$$
    $$ D \rightarrow A $$ (isothermal)

    So, option $$A$$ is correct.

  • Question 6
    1 / -0
    An ideal gas is taken through $$ A \rightarrow B \rightarrow C \rightarrow A $$, as shown in Fig. $$ 2.117 . $$ If the net heat supplied to the gas in the cycle is $$ 55 \mathrm{J} $$, the work done by the gas in the process $$ C \rightarrow A $$ is

    Solution
    $$d U=0 $$ Therefore by the first law of thermodynamics 

    $$ d Q_{\text {Cyclic }}=d W_{\text {Cyclic }} $$ since $$ B \rightarrow C $$ is an isochoric process

    $$\Rightarrow d W_{a \rightarrow c}=0 $$

    $$\Rightarrow 5=d W_{A \rightarrow B}+d W_{a \rightarrow C}+d W_{C \rightarrow A}$$

    $$\Rightarrow 5=10(2-1)+0+d W_{c \rightarrow A}$$

    $$\Rightarrow d W_{C \rightarrow A}=-5 \mathrm{J}$$
  • Question 7
    1 / -0
    One mole of an ideal monatomic gas undergoes thermodynamic cycle $$ 1 \rightarrow 2 \rightarrow 3 \rightarrow 1 $$ as shown in Fig. $$ 2.161 . $$ Initial temperature of gas is $$ T_{0}=300 \mathrm{K} $$
    Process $$ 1 \rightarrow 2: P=a V $$
    Process $$ 2 \rightarrow 3: P V= $$ Constant
    Process $$ 3 \rightarrow 1: P= $$ Constant 
    (Take $$ \ln |3|=1.09) $$

    Determine the heat capacity of each process
    Solution
    For process $$ 1 \rightarrow 2 $$
    $$W_{12} =\int_{1}^{2} \alpha V d V=\alpha \int_{V_{0}}^{3 v_{0}} V d V=\dfrac{\alpha}{2}\left(9 V_{0}^{2}-V_{0}^{2}\right)$$

    $$=4 \alpha V_{0}^{2}$$
    Using gas law, $$ \dfrac{P_{1} V_{1}}{T_{1}}=\dfrac{P_{2} V_{2}}{T_{2}} $$

    $$T_{2}=\dfrac{P_{2} V_{2}}{P_{1} V_{1}} T_{1}=\dfrac{V_{2}^{2}}{V_{1}^{2}} T_{1}=\left(\dfrac{3 V_{0}}{V_{0}}\right)^{2} T_{0}=9 T_{0}$$

    For process $$ 2 \rightarrow 3 $$

    $$W_{23} =R T_{2} \log \left|\dfrac{P_{2}}{P_{3}}\right|=R\left(9 T_{0}\right) \log \left|\dfrac{3 P_{0}}{P_{0}}\right| $$

    $$=9 R T_{0} \log |3|=9.81 R T_{0}$$

    For isothermal process: $$ P_{2} V_{2}=P_{3} V_{3} $$

    Therefore,$$V_{3}=\dfrac{P_{2} V_{2}}{P_{3}}=\frac{3 P_{0}}{P_{0}}\left(3 V_{0}\right)=9 V_{0}$$

    Also, $$ W_{31}=P_{0}\left(V_{1}-V_{3}\right)=P_{0}\left(V_{0}-9 V_{0}\right)=-8 P_{0} V_{0} $$ $$ =-8 R T_{0} $$

    Applying gas law in process $$ 1 \rightarrow 2 $$

    $$P_{0} V_{0}=R \mathrm{T}_{0} \quad \text { or } \quad \alpha V_{0}^{2}=R T_{0}$$

    The net work is $$W_{\text {net }} =W_{12}+W_{23}+W_{31} $$

    $$=4 R T_{0}+9.81 R T_{0}-8 R T_{0} $$

    $$=5.81 R T_{0}$$

    For process $$ 1 \rightarrow 2 $$
    $$\Delta U_{12} =C_{V}\left(T_{2}-T_{1}\right)$$

    $$=4 R T_{0}+12 R T_{0}=16 R T_{0}$$

    since,$$\Delta U_{12} =C_{12}\left(T_{2}-T_{1}\right)=8 C_{12} T_{0}$$
     
    $$C_{12} =2 R=16.6 \mathrm{J} / \mathrm{mol}-\mathrm{K}$$

    For the process $$ 2 \rightarrow 3: C_{23}=\infty $$ For the process $$ 3 \rightarrow 1: \mathrm{C}_{31}=C_{\mathrm{P}}+R  =5 R / 2=20.75 \mathrm{J} / \mathrm{mol}-\mathrm{K}$$
  • Question 8
    1 / -0
    Variation of internal energy with density of 1 mole of monatomic gas is depicted in Fig. 2.107 . Corresponding variation of pressure with volume can be depicted as (assume the curve is rectangular hyperbola)

    Solution
    Since $$ U \rho= $$ constant
    $$\dfrac{P}{\rho}=\dfrac{R T}{M}$$
    $$ P= $$ constant since $$ \rho $$ is increasing, therefore $$ V $$ is decreasing.
  • Question 9
    1 / -0
    A fixed mass of gas is taken through a process $$ A \rightarrow B \rightarrow C \rightarrow A $$
     $$ A \rightarrow B $$ is isobaric, $$ B \rightarrow C $$ is adiabatic and $$ C \rightarrow A $$ is isothermal.
     Find pressure at $$ C $$

    Solution
    (a) For adiabatic process BC,
         $$P_B = P_C$$     (i)

    For isothermal process CA,
    $$P_AV_A = P_CV_C$$         (ii)

    From Eq (i) & (ii)

    $$V_c = \left[\dfrac{V_B^{Y}}{V_A}\right]^{\dfrac{1}{\gamma -1}} = 64 m^3$$

    $$P_c = \dfrac{P_A V_A}{V_C} = \dfrac{10^5}{64} N/m^2$$

    (b) Work done, $$W = W_{AB} + W{BC} + W{CA}$$

    $$= P(V_A - V_A) + \dfrac{1}{\gamma - 1}[PV_B - P_CV_C + PV_A In (V_A/V_C)]$$

    Putting the values,

    $$W = 4.9 \times 10^5 J$$
  • Question 10
    1 / -0
    A fixed mass of gas is taken through a process $$ A \rightarrow B \rightarrow C \rightarrow A$$
     $$ A \rightarrow B $$ is isobaric, $$ B \rightarrow C $$ is adiabatic and $$ C \rightarrow A $$ is isothermal.
     Find volume at  C 

    Solution
    For adiabatic process BC,
         $$P_B = P_C$$     (i)

    For isothermal process CA,
    $$P_AV_A = P_CV_C$$         (ii)

    From Eq (i) & (ii)

    $$V_c = \left[\dfrac{V_B^{Y}}{V_A}\right]^{\dfrac{1}{\gamma -1}} = 64 m^3$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now