For process $$ 1 \rightarrow 2 $$
$$W_{12} =\int_{1}^{2} \alpha V d V=\alpha \int_{V_{0}}^{3 v_{0}} V d V=\dfrac{\alpha}{2}\left(9 V_{0}^{2}-V_{0}^{2}\right)$$
$$=4 \alpha V_{0}^{2}$$
Using gas law, $$ \dfrac{P_{1} V_{1}}{T_{1}}=\dfrac{P_{2} V_{2}}{T_{2}} $$
$$T_{2}=\dfrac{P_{2} V_{2}}{P_{1} V_{1}} T_{1}=\dfrac{V_{2}^{2}}{V_{1}^{2}} T_{1}=\left(\dfrac{3 V_{0}}{V_{0}}\right)^{2} T_{0}=9 T_{0}$$
For process $$ 2 \rightarrow 3 $$
$$W_{23} =R T_{2} \log \left|\dfrac{P_{2}}{P_{3}}\right|=R\left(9 T_{0}\right) \log \left|\dfrac{3 P_{0}}{P_{0}}\right| $$
$$=9 R T_{0} \log |3|=9.81 R T_{0}$$
For isothermal process: $$ P_{2} V_{2}=P_{3} V_{3} $$
Therefore,$$V_{3}=\dfrac{P_{2} V_{2}}{P_{3}}=\frac{3 P_{0}}{P_{0}}\left(3 V_{0}\right)=9 V_{0}$$
Also, $$ W_{31}=P_{0}\left(V_{1}-V_{3}\right)=P_{0}\left(V_{0}-9 V_{0}\right)=-8 P_{0} V_{0} $$ $$ =-8 R T_{0} $$
Applying gas law in process $$ 1 \rightarrow 2 $$
$$P_{0} V_{0}=R \mathrm{T}_{0} \quad \text { or } \quad \alpha V_{0}^{2}=R T_{0}$$
The net work is $$W_{\text {net }} =W_{12}+W_{23}+W_{31} $$
$$=4 R T_{0}+9.81 R T_{0}-8 R T_{0} $$
$$=5.81 R T_{0}$$
For process $$ 1 \rightarrow 2 $$
$$\Delta U_{12} =C_{V}\left(T_{2}-T_{1}\right)$$
$$=4 R T_{0}+12 R T_{0}=16 R T_{0}$$
since,$$\Delta U_{12} =C_{12}\left(T_{2}-T_{1}\right)=8 C_{12} T_{0}$$
$$C_{12} =2 R=16.6 \mathrm{J} / \mathrm{mol}-\mathrm{K}$$
For the process $$ 2 \rightarrow 3: C_{23}=\infty $$ For the process $$ 3 \rightarrow 1: \mathrm{C}_{31}=C_{\mathrm{P}}+R =5 R / 2=20.75 \mathrm{J} / \mathrm{mol}-\mathrm{K}$$