In an adiabatic process,
$$\dfrac {T^{\gamma}}{P^{\gamma -1}}=Const$$
$$ \Rightarrow T^{\gamma}= Const \times P^{\gamma -1}$$ ....(1)
Taking differential of both sides,
$$\gamma T^{\gamma -1} dT= Const \times (\gamma -1)P^{\gamma-2}dP$$
$$\gamma T^{\gamma} \dfrac{dT}{T} = Const \times (\gamma -1)P^{\gamma-1}\dfrac{dP}{P}$$
$$ \Rightarrow \gamma T^{\gamma} \dfrac{dT}{T} = \dfrac {T^{\gamma}}{P^{\gamma -1}}\times (\gamma -1)P^{\gamma-1}\frac{dP}{P}$$
$$ \Rightarrow \dfrac{dT}{T} = \dfrac {\gamma-1}{\gamma} * \dfrac{dP}{P}$$
In an adiabatic process,
$$\dfrac {T^{\gamma}}{P^{\gamma -1}}=Const$$
$$ \Rightarrow T^{\gamma}= Const \times P^{\gamma -1}$$ ....(1)
Taking differential of both sides, $$\gamma T^{\gamma -1} dT= Const \times (\gamma -1)P^{\gamma-2}dP$$
$$\gamma T^{\gamma} \dfrac{dT}{T} = Const \times (\gamma -1)P^{\gamma-1}\dfrac{dP}{P}$$
$$ \Rightarrow \gamma T^{\gamma} \dfrac{dT}{T} = \dfrac {T^{\gamma}}{P^{\gamma -1}}\times (\gamma -1)P^{\gamma-1}\dfrac{dP}{P}$$
$$ \Rightarrow \dfrac{dT}{T} = \dfrac {\gamma-1}{\gamma} \times \dfrac{dP}{P}$$ .....(1)
$$\gamma = \dfrac{2+f}{f}$$ where f is the no of degrees of freedom of the gas molecule A di-atomic molecule has 3 translational and 2 rotational degrees of freedom. Hence $$f=3+2=5$$ $$ \Rightarrow \gamma = \dfrac {2+f}{f}=\dfrac{2+5}{5}=\dfrac{7}{5}$$ Given $$ \dfrac {dP}{P}=0.035$$
substituting $$\dfrac {dP}{P}$$ and $$\gamma$$ in eqn(1)
$$ \dfrac{dT}{T}=\dfrac {(\dfrac{7}{5}-1)}{\dfrac{7}{5}}\times 0.035 \times 100=1$$
Thus, the percentage increment in temp of the gas is 1%