For isothermal process temperature is constant,
$$\therefore { P }_{ O }{ V }_{ O } = { P }_{ 1 }{ V }_{ 1 }$$
$${ P }_{ 1 } = \dfrac { { P }_{ 0 }{ V }_{ 0 } }{ { V }_{ 1 } } \longrightarrow (1)$$
For adiabatic process,
$${ P }_{ 0 }{ V }_{ 0 }^{ 4 } = { P }_{ 2 }{ V }_{ 2 }^{ Y }$$
$${ P }_{ 2 } = { P }_{ 0 }{ \left[ \dfrac { { V }_{ 0 } }{ { V }_{ 2 } } \right] }^{ Y }$$
Given, $${ V }_{ 2 } = { V }_{ 1 }$$
$${ P }_{ 2 } = { P }_{ 0 }{ \left[ \dfrac { { V }_{ 0 } }{ { V }_{ 2 } } \right] }^{ Y }\longrightarrow (2)$$
dividing (1) and (2)
$$\dfrac { { P }_{ 1 } }{ { P }_{ 2 } } = \dfrac { \dfrac { { P }_{ 0 }{ V }_{ 0 } }{ { V }_{ 1 } } }{ { P }_{ 0 }{ \left[ \dfrac { { V }_{ 0 } }{ { V }_{ 1 } } \right] }^{ Y } }$$
$$\dfrac { { P }_{ 1 } }{ { P }_{ 2 } } = { \left[ \dfrac { { V }_{ 0 } }{ { V }_{ 1 } } \right] }^{ 1-Y }$$
As the gas in expanded, $${ V }_{ 0 }<{ V }_{ 1 }$$
$$\dfrac { { V }_{ 0 } }{ { V }_{ 1 } } <1$$
As, $$Y>1$$
$$1-Y<0$$
$$\therefore { \left[ \dfrac { { V }_{ 0 } }{ { V }_{ 1 } } \right] }^{ 1-Y }>1$$
$$\dfrac { { P }_{ 1 } }{ { P }_{ 2 } } > 1$$
$$\therefore { P }_{ 1 }>{ P }_{ 2 } (C)$$
OPTION : C