Self Studies

Kinetic Theory Test - 61

Result Self Studies

Kinetic Theory Test - 61
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The mass of hydrogen molecules is $$3.32 \times 10 ^ { - 24 }$$ gm. If $$10 ^ { 23 } \mathrm { H } _ { 2 }$$ molecules strike $$2$$ sq. cm are per second with velocity of $$10 ^ { 5 }$$ cm/sec at an angle of $$45 ^ { \circ }$$ to the normal to wall, then the exerted pressure will be 
    Solution
    $$\begin{array}{l} \Delta P=\left( { 2mv\cos { { 45 }^{ o } }  } \right) \times { 10^{ 23 } } \\ =2\times 3.32\times { 10^{ -24 } }\times { 10^{ -3 } }\times \frac { { 10 } }{ { 100 } } \times \frac { 1 }{ { \sqrt { 2 }  } } \times 10 \\ \Rightarrow F=\frac { { 2\times 3.32 } }{ { \sqrt { 2 }  } } \times { 10^{ -1 } } \\ \therefore pressure=\frac { { 2\times 3.32\times { { 10 }^{ -1 } } } }{ { \sqrt { 2 } \times 2\times { { 10 }^{ -4 } } } }  \\ =\frac { { 2\times 3.32 } }{ { 2\sqrt { 2 }  } } \times { 10^{ 3 } } \\ =\frac { { 3.32 } }{ { \sqrt { 2 }  } } \times { 10^{ 3 } }\, N/{ m^{ 2 } } \\ \approx 2350\, N/{ m^{ 2 } } \\ Hence, \\ option\, \, D\, \, is\, \, correct\, \, answer. \end{array}$$
  • Question 2
    1 / -0
    Two moles of helium gas are taken along the path ABCD (as shown in figure). The work done by the gas is

    Solution

  • Question 3
    1 / -0
    The volume of an ideal gas is 1 litre and its pressure is equal to 72 cm of mercury column. The volume of gas is made $$ 900 cm^3 $$ by compressing it isothermally. The stress of the gas will be 
    Solution

  • Question 4
    1 / -0
    What is the mass of :
  • Question 5
    1 / -0
    Two kg of a monoatomic gas is at a pressure of $$4 \times 10^4 N/m^2$$ . The density of the gas is $$8 kg /m^3$$. What is the order of energy of the gas due to its thermal motion ?
    Solution
    Thermal energy of N molecule
    $$= N \left(\dfrac{3}{2} kT \right)$$
    $$= \dfrac{N}{N_A} \dfrac{3}{2} RT$$
    $$= \dfrac{3}{2} (nRT)$$
    $$= \dfrac{3}{2} PV$$
    $$= \dfrac{3}{2} P \left(\dfrac{m}{8} \right)$$
    $$= \dfrac{3}{2} \times 4 \times 10^4 \times \dfrac{2}{8}$$
    $$= 1.5 \times 10^4$$
    order will $$10^4$$.
  • Question 6
    1 / -0
    An open container is placed in atmosphere. During a time interval, temperature of atmosphere increases and then decreases. The internal energy of gas in container
    Solution

  • Question 7
    1 / -0
    For ideal monoatomic gas,the universal gas constant R is n times molar heat capacity at constant pressure $$ C_p $$ Here n is :-
    Solution

  • Question 8
    1 / -0
    Half mole of an ideal monoatomic gas is heated at constant  pressure of 1 atm from $${ 20 }^{ 0 }C$$ to $${ 90 }^{ 0 }C$$ . Work done by gas is close to : ( gas constant R=8.31 j / mol -k ) 
    Solution

  • Question 9
    1 / -0
    One mole of an ideal gas expands against a constant external pressure of 1 atm from a volume of $$10d{ m }^{ 3 }$$ to a volume of $$30d{ m }^{ 3 }$$. What would be the work done in joules?
    Solution
    $$\begin{array}{l} Work\, done\, for\, isothermal\, ansion,W=-\int _{ { V_{ 1 } } }^{ { V_{ 2 } } }{ pdV }  \\ { { Sin } }ce,\, \rho \, is\, cons\tan  t, \\ W=-\int _{ { V_{ 1 } } }^{ { V_{ 2 } } }{ dV }  \\ W=-\rho \left( { { V_{ 2 } }-{ V_{ 1 } } } \right)  \\ W=-1\, atm\left( { 30-10 } \right) L \\ =-20\, atm\, L \\ Now,\, 0.08206\, L\, atm=8.314J\left( { As\, we\, know } \right)  \\ -20\, atm\, L=\dfrac { { 8.314 } }{ { 0.08206 } } \times -20J \\ =-2026.32J \end{array}$$
    Hence,
    option $$(A)$$ is correct answer.
  • Question 10
    1 / -0
    N moles of a monoatomic gas is carried round the reversible rectangular cycle ABCDA as shown in the diagram. The temperature at $$A$$ is $$T _ { 0 }$$ . The thermodynamic efficiency of the cycle is

    Solution
    $$\begin{array}{l} At\, \, A\, \, { P_{ 0 } }{ V_{ 0 } }=nR{ T_{ 0 } }\to \left( i \right)  \\ At\, \, B\, \, 2{ P_{ 0 } }{ V_{ 0 } }=nR{ T_{ 1 } }\to \left( { ii } \right)  \end{array}$$
    Efficiency of thermodynamic cycle
    $$\eta  = 1 - \frac{{{T_B}}}{{{T_A}}}$$
    $$By\left( i \right)\,\,and\,\,\left( {ii} \right)$$
    $$\dfrac{{{T_B}}}{{{T_A}}} = \dfrac{1}{2}$$
    $$\eta  = 1 - \frac{1}{2} = \dfrac{1}{2} = 50\,\,\% $$
    Option B.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now