Self Studies

Oscillations Test - 13

Result Self Studies

Oscillations Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The displacement x of a particle in motion is given in terms of time by x (x - 4) = 1 - 5 $$\cos \omega t$$
    Solution
    $$\begin{array}{l} x\left( { x-u } \right) =1-5\cos  wt \\ { x^{ 2 } }-4x=1-5\cos  wt \\ x=\dfrac { { 4\pm \sqrt { 16+4\left( { 1-5\cos  wt } \right)  }  } }{ 2 }  \\ =\dfrac { { 4\pm \sqrt { 20-2\cos  wt }  } }{ 2 }  \\ =\dfrac { { 4\pm \sqrt { 20\left( { 2{ { \sin   }^{ 2 } } } \right) wt }  } }{ 2 }  \\ =\dfrac { { 4\pm \sqrt { 40 } \sin  wt } }{ 2 }  \\ =2\pm \sqrt { 10 } \sin  wt \\ So.\, particle\, perform\, SHM \\ Hence,\, the\, option\, A\, is\, the\, correct\, answer. \end{array}$$
  • Question 2
    1 / -0
    Two particle execute S H M of same amplitude and frequency along the same straight line, They pass one another going  in opposite direction each time their displacement is half of their amplitude. The phase difference between them is
    Solution
    $$\begin{array}{l} According\, to\, \, question............. \\ In\, first\, case: \\ \, \, \, \, \, \, \frac { a }{ 2 } =a\, sin\, \omega t \\ \Rightarrow sin\, \omega t=\frac { 1 }{ 2 }  \\ and\, in\, \, { { second } }\, \, case: \\ \, \, \, \, \, \, \frac { a }{ 2 } =a\, sin\, (\omega t+\varphi ) \\ \Rightarrow sin\, (\omega t+\varphi )=\frac { 1 }{ 2 }  \\ Now, \\ \Rightarrow sin\, \omega t\cos  \varphi +\cos  \omega t\sin  \phi =\frac { 1 }{ 2 }  \\ \Rightarrow \frac { 1 }{ 2 } \cos  \varphi +\sqrt { 1-\frac { 1 }{ 4 }  } \sin  \varphi =\frac { 1 }{ 2 }  \\ \Rightarrow \sqrt { 3 } \sin  \phi =1-\cos  \varphi  \\ \Rightarrow { \sin ^{ 2 }  }\varphi =1+{ \cos ^{ 2 }  }\varphi -2\cos  \varphi  \\ \Rightarrow 4{ \cos ^{ 2 }  }\varphi -2\cos  \varphi -2=0 \\ \Rightarrow \cos  \varphi =\frac { { 1-3 } }{ 4 } =-\frac { 1 }{ 2 }  \\ \therefore \, \, \, \, \, \cos  \varphi =-\frac { 1 }{ 2 }  \\ \, \, \, \, \, \, \, \, \, \, \varphi ={ 120^{ 0 } } \\ so\, \, that\, \, the\, correct\, \, option\, is\, B. \end{array}$$
  • Question 3
    1 / -0
    A uniform solid sphere of mass m and radius R is suspended in vertical plane from a point on its periphery.The time period of its oscillation is:
    Solution
    $$T=2\pi \sqrt { \cfrac { I }{ mgL }  } $$
    where $$I=m{ R }^{ 2 }+\cfrac { m{ R }^{ 2 } }{ 2 } =\cfrac { 3m{ R }^{ 2 } }{ 2 } $$
    $$\therefore T=2\pi \sqrt { \cfrac { 3m{ R }^{ 2 } }{ 2mgR }  } =2\pi \sqrt { \cfrac { 3{ R } }{ 2g }  } $$
  • Question 4
    1 / -0
    Function $$x = A \sin ^ { 2 } \omega t + B \cos ^ { 2 } \omega t + C \sin \omega t \cos \omega t$$ represents SHM
    Solution
    $$\begin{array}{l} x=A{ \sin ^{ 2 }  }\omega t+B{ \cos ^{ 2 }  }\omega t+C\sin  \omega \cos  \omega t \\ =\dfrac { { A\left( { 1-\cos  2\omega t } \right)  } }{ 2 } +\dfrac { { B\left( { \cos  2\omega t-1 } \right)  } }{ 2 } +\dfrac { C }{ 2 } \sin  2\omega t \\ =\left( { \dfrac { A }{ 2 } -\dfrac { B }{ 2 }  } \right) +\left( { \dfrac { B }{ 2 } -\dfrac { A }{ 2 }  } \right) \cos  \omega t+\dfrac { c }{ 2 } \sin  \omega t \\ if\, \, \, \, A=B\, \, \, \, \, \, \, \& \, \, \, C=2B \\ x=B+B\sin  2\omega t \\ \therefore Amplitude\, \, =B \end{array}$$
    $$\therefore $$ Option $$D$$ is correct.
  • Question 5
    1 / -0
    For a simple pendulum, graph between $$L$$ and $$T$$ will be a :
    Solution
    $$T=2\pi \sqrt{\dfrac{l}{g}}$$
    $$\Rightarrow l\propto T^{2}$$ (Equation of parabola)
  • Question 6
    1 / -0
    The phase difference between the displacement and acceleration of particle executing S.H.M. in radian
    Solution
    SHM is represented by $$x=A\sin\omega t$$
    Then, the velocity and acceleration after differentiation will be
    $$v=A\omega \cos\omega t$$
    $$a=-A\omega^2\sin\omega t$$
    Now, we see displacement is in $$\sin\omega t$$ & velocity is in $$\cos\omega t$$
    $$\Rightarrow$$ Phase difference between x & $$v=\pi/2$$ rad
    Similarly, we see velocity in $$\cos\omega t$$ & acceleration in $$\sin \omega t$$
    $$\Rightarrow$$ Phase difference between v & $$a=\pi/2$$rad
    Thus, we can conclude that the phase difference between x & $$a=\pi$$ rad.

  • Question 7
    1 / -0
    A particle of mass $$2 kg$$ moves along x - axis with potential energy depending upon 'x' co-ordinate as $$ U_(x) = (x^2 - 2 x ) J$$. The mass is $$2 kg$$ .
  • Question 8
    1 / -0
    The natural angular frequency of a particle of mass 'm' attached to an ideal spring of force constant 'K' is
    Solution
    Suppose you displace the particle by a distance $$'x'$$
    The spring now exerts a force,
    This provides nccenary force for $$SHM$$
    $$\Rightarrow \ F=mwe^2x=k2$$ ($$w:$$ natural angular frequency )
    $$\Rightarrow \ w=\sqrt {K/m}$$

  • Question 9
    1 / -0
    The motion of a pendulum is
    Solution
    The motion of a pendulum is oscillatory.
  • Question 10
    1 / -0
    The equation of motion of a particle is $$x = a \cos (a t)^{2}$$. The motion is 
    Solution
     $$x = a \cos (a t)^{2}$$ here,

    $$x$$ is a cosine. 

    This results in oscillatory motion.

    $$f(t)= f(x)+ f(t)= f(x+t)$$

    $$x(t)= a \cos \alpha  {t} ^{2}$$

    $$x(t+T)= a \cos( \alpha  {t+T})^{2}$$

     $$ a\cos(\ alpha {t}^{2} )+ (\alpha {T}^{2}) +(2\alpha t T)$$

    which is not equal to $$x(t)$$ this shows this is not periodic.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now