Self Studies

Oscillations Test - 16

Result Self Studies

Oscillations Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A body executing SHM has its velocity $$10 cm/s$$ and $$7 cm/s$$ when its displacements from mean position are $$3 cm$$ and $$4 cm$$ respectively. The length of path is
    Solution
    $$v=\omega \sqrt{A^{2}-x^{2}}$$
    $$v_{1}=10 cm /sec$$
    $$v_{2}=7 cm /sec$$
    $$x_{1}=3 cm$$
    $$x_{2}=4cm$$

    $$v_{1}=\omega\sqrt{A^{2}-x^{2}_{1}}$$

    $$v_{2}=\omega\sqrt{A^{2}-x^{2}_{2}}$$

    $$\therefore \dfrac{10}{7}=\dfrac{\omega \sqrt{A^{2}-(3)^{2}}}{\omega \sqrt{A^{2}-(4)^{2}}}$$

    $$\dfrac{100}{49}=\dfrac{A^{2}-9}{A^{2}-16}$$

    $$51A^{2}=1600-(9\times 49)$$
    $$A=4.76 cm$$
    Length of the path is $$2A = 9.52$$ cm
  • Question 2
    1 / -0
    The minimum phase difference between two SHM's is:
    $$ y_{1}=\sin \left(\dfrac{\pi}{6}\right) \sin(\omega t)+\sin\left(\dfrac{\pi }{3}\right) \cos(\omega t )$$

    $$ y_{2}=\cos\left(\dfrac{\pi}{6}\right) \sin(\omega t)+\sin \left(\dfrac{\pi}{3}\right) \cos(\omega t)$$ is:
    Solution
    $$y_{1}=\sin(\omega t)\sin\left(\dfrac{\pi }{6}\right)+ \cos$$ $$\omega t \sin\dfrac{\pi }{3}$$

    $$=\sin$$ $$\omega t \cos\left(\dfrac{\pi }{3}\right)+\cos$$ $$\omega t \sin\dfrac{\pi }{3}$$

    $$=\sin\left(\omega t +\dfrac{\pi }{3}\right)$$

    Similarly for the second equation is:
    $$y_{2}=\sin\left(\omega t +\dfrac{\pi }{6}\right)$$

    Thus phase difference between the two waves is 
    $$\dfrac{\pi }{3}-\dfrac{\pi }{6}=\dfrac{\pi }{6} $$

  • Question 3
    1 / -0
    A particle executes SHM in a straight line. The maximum speed of the particle during its motion is $$V_{max}$$. Then the average speed of the particle during the SHM is :
    Solution
    $$Vm=A\omega$$
    $$V avg=\dfrac{distance \  \ traveled }{time  \ \  taken}$$
    $$=\dfrac{A}{T}$$
    $$T=\dfrac{2\pi}{\omega}$$
    $$Vavg=\dfrac{4  A\times \omega}{2\pi} = \dfrac{2 A \times \omega}{\pi}$$
    $$Vavg =\dfrac{2 V_m}{\pi}$$
  • Question 4
    1 / -0
    A 1 kg mass executes SHM with an amplitude 10 cm, it takes $$2\pi$$ seconds to go from one end to the other end. The magnitude of the force acting on it at any end is :
    Solution
    As $$  w  = \cfrac{2\pi}{T} = 1 \ rad/sec $$ ;    Amplitude  $$A  = 0.1 m$$
    magnitude of  force $$ = m \times w^{2}.A$$
                                      $$=  0.1 N$$
  • Question 5
    1 / -0
    A body executes S.H.M. under the action of a force $$F$$$$_{1}$$ with a time period $$4/5$$ seconds. If the force is changed to $$F$$$$_{2}$$, it executes S.H.M. with a time period $$3/5$$ seconds. If both the forces $$F$$$$_{1}$$and $$F$$$$_{2}$$ act simultaneously in the same direction on the body, then its time period in seconds is:
    Solution
    $$F_{1}=m\omega^{2}x$$
    $$T=\dfrac{2\pi}{\omega}$$
    $$F=ma=$$ $$4m\pi^{2} x \dfrac{1}{T^{2}}$$
    $$\therefore F_{1}=\dfrac{4m\pi^{2}}{T_{1}^{2}}x$$
    $$F_{2}=\dfrac{4m \pi^{2}}{T^{2}_{2}}x$$
    $$F_{1}+F_{2}=\dfrac{  4m  \pi^{2}x}{T^{2}} + \dfrac{4m \pi^{2}x}{T^{2}_{2}}$$
    $$\dfrac{1}{T^{2}}=\dfrac{1}{T^{2}_{1}}+\dfrac{1}{T^{2}_{2}}$$
    $$\therefore T=\dfrac{12}{25}$$
  • Question 6
    1 / -0
    A particle free to move along the x-axis has potential energy given by $$U(x)=k[1-exp\left ( -x^{2} \right )]$$ for$$-\infty \leq x\leq +\infty ,$$ where k is a positive constant of appropriate dimensions. Then:
    Solution
    $$exp \left ( -x^{2} \right ) = 1 - x^{2}  + \cfrac{x^{4}}{2!} + ---$$
    For  small  $$x$$ :  $$exp \left ( -x^{2} \right ) = (1 - x^{2})$$
    Thus  $$U(x) = K [1-(1-x^{2})] = K x^{2}$$
         $$ F = - \dfrac{dU}{dx} = - \dfrac{d(kx^{2})}{dx}  =  -2 K x$$
    Thus, the motion  is  an  SHM.
  • Question 7
    1 / -0
    A particle of mass $$m$$ is executing oscillations about the origin on the $$x$$-axis. It's potential energy is $$U(x)=k\left | x \right |^{3}$$, where $$k$$ is a positive constant. If the amplitude of oscillation is $$a$$, then its time period $$T$$ is:
    Solution
    $$U=k |x|^3 \Rightarrow F=-\dfrac{dU}{dx}=-3k|x|^2 ...(i)$$
    Also, for SHM $$x=a \sin \omega t$$ and $$\dfrac{d^2x}{dt^2}+\omega ^2x=0$$
    $$\Rightarrow acceleration\ a=\dfrac{d^2x}{dt^2}=-\omega ^2x \Rightarrow  F=ma$$
    $$=m \dfrac{d^2x}{dt^2}= - m \omega ^2x ...(ii)$$
    From equation $$(i)$$ & $$ (ii)$$ we get $$\omega =\sqrt{\dfrac{3kx}{m}} $$
    $$ \Rightarrow T=\dfrac{2 \pi}{\omega}= 2 \pi \sqrt{\dfrac{m}{3kx}}= 2 \pi \sqrt{\dfrac{m}{3k(a \sin \omega t)}} \Rightarrow T \propto \dfrac{1}{\sqrt a}$$
  • Question 8
    1 / -0
    A body of mass 1/4 kg is in S.H.M and its displacement is given by the relation $$y= 0.05 sin(20t+\dfrac{\pi }{2})$$ m. If $$t$$ is in seconds, the maximum force acting on the particle is:
    Solution
    We know that 
    $$F= m\omega^{2}A$$
    $$\omega = 20   rad / sec$$
    $$A =   0.05   m$$
    Thus
    $$F= \dfrac{1}{4}\times 20\times 20\times \dfrac{1}{20}$$
    $$=5 N $$
  • Question 9
    1 / -0
    Two particles are in S.H.M. along parallel straight lines with same amplitude and time period. If they cross each other in opposite directions at the midpoint of mean and extreme positions. Phase difference between them is:
    Solution
    Since $$x=A\sin { \left( \omega t+\phi  \right)  }$$
    $$\\ \dfrac { A }{ 2 } =A\sin { \left( \omega t+\phi  \right)  } \\ \Rightarrow \sin { \left( \omega t+\phi  \right)  } =\frac { 1 }{ 2 } \\ \Rightarrow \omega t+\phi =30^{ \circ  }or\quad 150^{ \circ  }$$
    So the one particle has phase of $$30^{ \circ  }$$ and another has $$150^{ \circ  }$$
    So the phase difference is $$150^{ \circ  }-30^{ \circ  }=120^{ \circ  }$$
  • Question 10
    1 / -0
    A disc of mass $$M$$ is attached to a horizontal massless spring of force constant $$K$$ so that it can roll without slipping along a horizontal surface. If the disc is pushed a little towards right and then released, its center of mass executes SHM with a period of
    Solution
    Spring exerts a force equal to $$Kx$$ on the center of mass of the disc.
    Friction acts on opposite direction to cause rolling without slipping.
    $$Kx-f=Ma_{cm}$$
    $$fR=\dfrac{1}{2}MR^2\alpha$$
    Solving gives $$f=\dfrac{Kx}{3}$$
    Hence restoring force acting on sphere=$$kx-f=\dfrac{2Kx}{3}$$
    Hence $$\omega=\sqrt{\dfrac{2K}{3M}}$$
    Hence time period of oscillation=$$\dfrac{2\pi}{\omega}=2\pi\sqrt{\dfrac{3M}{2K}}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now