$$E_{total}$$ = U + (kinetic energy)
$$=Kr+\dfrac{mv^{2}}{2}=Kr+\dfrac{m\omega ^{2}r^{2}}{2}$$$$=\dfrac{3Kr}{2}$$
($$\because $$ for circular motion F = m $$\omega ^{2}r$$$$=\left | \dfrac{dU}{dr} \right |=K$$)
Angular momentum about the origin:
L = $$m\omega r^{2}$$$$=mr^{2}\sqrt{\dfrac{K}{mr}}$$$$=\sqrt{mKr^{3}}$$
Angular frequency of circular motion is
$$\omega =\sqrt{\dfrac{K}{mr}}$$
Effective potential
$$U_{eff}=Kr+\dfrac{L^{2}}{2mr^{2}}$$
Radius $$r_{o}$$ of the stationery circular motion is
$$\left ( \dfrac{dU_{eff}}{dr} \right )_{r=r_{o}}=K-\dfrac{L^{2}}{mr_{0}^{3}}=0$$
$$\Rightarrow r_{o}=\left ( \dfrac{L^{2}}{mK} \right )^{\frac{1}{3}}$$
$$\left ( \dfrac{d^{2}U_{eff}}{dr^{2}} \right )_{r=r_{o}}=\dfrac{3L^{2}}{mr^{4}}|_{r=r_{o}}$$$$=\dfrac{3L^{2}}{m}\left ( \dfrac{mK}{L^{2}} \right )^{\frac{4}{3}}$$
The angular frequency of small radial oscillations about $$r_{o},$$ if it is slightly disturbed from the stationary circular motion:
$$\omega _{r}=\sqrt{\dfrac{1}{m}\left ( \dfrac{d^{2}U_{eff}}{dr^{2}} \right )}_{r=r_{o}}$$ = $$\sqrt{\dfrac{3K}{m}\left ( \dfrac{mK}{L^{2}} \right )}^{\frac{1}{3}}$$$$=\sqrt{\dfrac{3K}{mr_{o}}}=\sqrt{3}\omega _{o}$$, where $$\omega _{o}$$ is angular frequency of stationary circular motion.
So, according to given condition, $$n=3$$.