Self Studies

Oscillations Test - 61

Result Self Studies

Oscillations Test - 61
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    PE of a particle is $$\displaystyle U(x)=\frac{a}{x^2}-\frac{b}{x}$$. Find the time period of small oscillation
    Solution
    The equilibrium position is $$\displaystyle \frac{du}{dx}=0$$
    $$\displaystyle \frac{-2a}{x_0^3}+\frac{b}{x_0^2}=0$$
    or $$\displaystyle x_0=\frac{2a}{b}$$
    $$\displaystyle u(x)=\frac{a}{x_0^2}-\frac{b}{x_0}+\left| (x-x_0)\frac{dU}{dx}\right |_{x=x_0}+\left |\frac{1}{2}(x-x_0)^2\frac{d^2u}{dx^2}\right|_{x=x_0}$$
    $$\displaystyle \left|\frac{d^2u}{dx^2}\right|_{x=x_0}=\frac{6a}{x_0^4}-\frac{2b}{x_0^3}=\frac{6a}{\left(\displaystyle \frac{2a}{b}\right)^4}-\frac{2b}{\left(\displaystyle \frac{2a}{b}\right)^3}=\frac{b^4}{8a^3}$$
    Thus $$\displaystyle u(x)=U(x_0)+\frac{1}{2}\left (\frac{b^4}{8a^3} \right) y^2$$
    comparing with $$\displaystyle \frac{1}{2}m\omega^2 y^2=\frac{1}{2}\frac{b^4}{8a^3} y^2$$
    $$\displaystyle \omega = \sqrt{\frac{b^4}{8a^3m}}$$
    or $$\displaystyle T=2\pi\sqrt{\frac{8a^3m}{b^4}}$$
  • Question 2
    1 / -0
    A hydrogen atom has mass $$1.68\times 10^{-27}$$kg. When attached to a certain massive molecule it oscillates with a frequency $$10^{14}$$ Hz and with an amplitude $$10^{-9}$$ cm. Find the force acting on the hydrogen atom.
    Solution
    $$\omega ^{ 2 }=\dfrac { k }{ m } \\ \Rightarrow { \left( 2\pi f \right)  }^{ 2 }=\dfrac { k }{ m } \\ \Rightarrow k=4\pi ^{ 2 }f^{ 2 }m$$
    and
    $$F=kx_{ 0 }=4\pi ^{ 2 }f^{ 2 }mx_{ 0 }\\ \Rightarrow F=4\times \pi ^{ 2 }\times 10^{ 28 }\times 1.68\times 10^{ -27 }\times 10^{ -11 }N\\ \Rightarrow F=6.63\times 10^{ -9 }N$$
  • Question 3
    1 / -0
    A particle of mass $$m$$ moves according to the equation $$F=-amr$$ where $$a$$ is a positive constant$$, r$$ is radius vector. $$r=r_0\hat{i}$$ and $$v=v_0\hat{j}$$ at $$t=0$$. Describe the trajectory.
    Solution
    $$F=-amr\\ \Rightarrow F_{ x }\hat { i } +F_{ y }\hat { j } =-am\left( x\hat { i } +y\hat { j }  \right) \\ \Rightarrow m\dfrac { d^{ 2 }x }{ dt^{ 2 } } \hat { i } +m\dfrac { d^{ 2 }y }{ dt^{ 2 } } \hat { j } =-am\left( x\hat { i } +y\hat { j }  \right)$$

    $$ \dfrac { d^{ 2 }x }{ dt^{ 2 } } =-ax$$ and $$\dfrac { d^{ 2 }y }{ dt^{ 2 } } =-ay\quad $$ ...............................................................$$(i)$$

    Thus $$x=x_o\sin{(\omega t+\theta)}$$ and $$\omega^2=a$$ .........................................................................................$$(ii)$$
    $$\dfrac{dx}{dt}=x_o\omega\cos{(\omega t+\theta)}$$
    since $$v_x=0$$ when $$t=0$$
    $$\Rightarrow x_o\omega\cos{(\theta)}=0$$
    $$\Rightarrow \theta=\dfrac{\pi}{2}$$
    $$\Rightarrow x=x_o \sin\left( \omega t+\dfrac { \pi  }{ 2 }  \right) $$
    $$x=x_o \cos\left( \omega t \right) $$
    $$\Rightarrow x=r_o \cos\left( \omega t \right)$$ ...............................................$$(iii)$$ $$\because x(t=0)=r_o $$

    Now from $$(i)$$, we have, 
    $$y=y_0\sin{(\omega t+\beta)}$$
    $$y=y_0\sin{(\omega t)}                        \because y(t=0)=0$$
    $$\dfrac{dy}{dt}=y_0\omega\cos {(\omega t)}$$
    since $$v_y=v_o$$ when $$t=0$$
    $$\Rightarrow v_o=y_0\omega$$
    $$\Rightarrow y=\dfrac{v_o}{\omega}\sin{(\omega t)}$$ .....$$(iv)$$

    from $$(iii)$$ and $$(iv)$$ we have,
    $$\left(\dfrac{x}{r_0}\right)^2+\left(\dfrac{y}{v_0/\omega}\right)^2=1$$
    $$\Rightarrow \left(\dfrac{x}{r_0}\right)^2+\omega^2\left(\frac{y}{v_0}\right)^2=1$$
    $$\Rightarrow \left(\dfrac{x}{r_0}\right)^2+a\left(\dfrac{y}{v_0}\right)^2=1            \because \omega^2=a$$ from $$(ii)$$
  • Question 4
    1 / -0
    Two masses $$m_1$$ and $$m_2$$ are connected to a spring of spring constant $$K$$ at two ends. The spring is compressed by $$y$$ and released. The distance moved by $$m_1$$ before it comes to a stop for the first time is 
    Solution
    the spring is compressed by y therefore the force on masses is $$F = Ky$$
    let $$m_1$$ traveled distance a and mass $$m_2$$ be b
    therefore
    $$F = ma$$
    $$F(t) = - m_1 \dfrac{da(t)^2}{dt^2}$$
    similarly for second mass
    $$-F(t) = m_2\dfrac{db(t)^2}{dt^2}$$
    Now Assuming simple harmonic motion $$a(t) =Asin  \omega t$$ and $$b(t) = B sin \omega t$$

    as the spring force is equal for both masses
    $$m_1a = m_2b$$
    $$m_1 A sin \omega t = m_2 B sin \omega t$$
    $$m_!A = m_2 B$$

    As long as the above amplitude equation will hold center of mass wont move
    Eq for center of mass is
    $$0 =\dfrac{-Bm_2 + Am_1}{m_1+m_2}$$
    we know $$A+B = y$$
    $$m_1A = m_2(y-A)$$
    $$A = \dfrac{m_2y}{m_1+m_2}$$ 
  • Question 5
    1 / -0
    In the figure shown, a spring mass system is placed on a horizontal smooth surface in between two vertical rigid walls $$W_{1}$$ and $$W_{2}$$. One end of spring is fixed with wall $$W_{1}$$ and other end is attached with mass $$m$$ which is free to move. Initially, spring is tension free and having natural length $$l_{0}$$. Mass $$m$$ is compressed through a distance a and released. Taking the collision between wall $$W_{2}$$ and mass $$m$$ as elastic and $$K$$ as spring constant, the average force exerted by mass $$m$$ on wall $$W_{2}$$ in one oscillation of block is

    Solution
    maximum velocity $$\displaystyle v_{max}=\omega A\left ( \sqrt{\frac{K}{m}} \right )a$$
    Change in momentum $$\Delta P=2mv_{max}=2m\left ( \sqrt{\frac{K}{m}} \right )a$$
    Force exerted by the mass$$m$$ on wall $$W_2$$ is    $$\displaystyle F=\frac{\Delta P}{\Delta t}=\frac{\Delta P}{T/2}=\frac{2ma\sqrt{k/m}}{\pi \sqrt{m/k}}=\frac{2aK}{\pi }$$
  • Question 6
    1 / -0
    A particle of mass is executing oscillations about the origin on the x-axis. Its potential energy is $$V(x) = k|x|^3$$, where $$k$$ is a positive constant. If the amplitude of oscillation is $$a$$, then its time period $$T$$ is proportional 
    Solution
    $$\quad V(x) = k|x|^3$$
    Since, $$\quad F = -\displaystyle\frac{dV(x)}{dx} = -3k|x|^2 \quad                             ...(i)$$
    $$\quad x = a\sin(\omega t)$$
    This equation always fits to the differential equation
    $$\quad \displaystyle\frac{d^2x}{dt^2} = -\omega^2x$$ or $$m\displaystyle\frac{d^2x}{dt} = -m\omega^2x$$
    $$\quad \Rightarrow F = - m\omega^2x\quad                         ...(ii)$$
    Equations $$(i)$$ and $$(ii)$$ give
    $$\quad -3k|x|^2 = -m\omega^2x$$
    $$\quad \Rightarrow \omega = \sqrt{\displaystyle\frac{3kx}{m}} = \sqrt{\displaystyle\frac{3ka}{m}}[\sin(\omega t)]^{1/2}$$
    $$\quad\Rightarrow \omega \propto \sqrt{a}$$
    $$\quad \Rightarrow T \propto \displaystyle\frac{1}{\sqrt{a}}$$
  • Question 7
    1 / -0
    A particle oscillates simple harmonically with a period of 16 s. Two second after crossing the equilibrium position its velocity becomes 1 m/s. The amplitude is
    Solution
    $$\displaystyle \omega =\frac{2\pi }{T}=\frac{2\pi }{16}=\frac{\pi }{8}$$ rad/s
    At t=0, particle crosses the mean position. Hence its velocity is maximum. So, velocity as a function of time can be written as
    $$v=v_{max}\cos \omega t$$
    or $$v=\omega A\cos \omega t$$
    $$\therefore $$   $$\displaystyle 1=\left ( \frac{\pi }{8} \right )A\cos \left ( \frac{\pi }{8} \right )\left ( 2 \right )=\left ( \frac{\pi }{8\sqrt{2}} \right )A$$
    $$\therefore $$   $$\displaystyle A=\frac{8\sqrt{2}}{\pi }$$ m
  • Question 8
    1 / -0
    Two spring-mass systems support equal mass and have spring constants $$\displaystyle K_{1}$$ and $$\displaystyle K_{2}$$. If the maximum velocities in two systems are equal then ratio of amplitude of 1st to that of 2nd is 
    Solution
    Maximum velocity $$V_{max}=\omega A$$
    $$\omega=\sqrt{\frac{K}{m}}$$
    $$V_{1}=\sqrt{\dfrac{K_{1}}{m}}A_{1}$$
    $$V_{2}=\sqrt{\dfrac{K_{2}}{m}}A_{2}$$
    It is given that both have same maximum velocity and same mass
    $$V_{1}=V_{2}$$
    $$\sqrt{\dfrac{K_{1}}{m}}A_{1}=\sqrt{\dfrac{K_{2}}{m}}A_{2}$$
    $$\dfrac{A_{1}}{A_{2}}=\sqrt{\dfrac{K_{2}}{K_{1}}}$$
  • Question 9
    1 / -0
    The equation of displacement of a particle executing simple harmonic motion is x = (5m) $$\displaystyle \sin \left [ (\pi s^{-1})t+\frac{\pi }{3} \right ]$$. Write down the amplitude, time period and maximum speed. Also find the velocity at t = 1s.
    Solution
    Comparing with equation $$\displaystyle x=A\sin (\omega t+\delta )$$ we see that the amplitude = 5 m
    and time period = $$\displaystyle \frac{2\pi }{\omega }=\frac{2\pi }{\pi s^{-1}}=2s$$
    The maximum speed = $$\displaystyle A\omega =5m\times \pi s^{-1}=5\pi \: m/s$$
    The velocity at time $$\displaystyle t=\frac{dx}{dt}=A\omega \cos (\omega t+\delta )$$
    At              t = 1 s
    $$\displaystyle v=(5m)(\pi s^{-1})\cos \left ( \pi +\frac{\pi }{3} \right )=-\frac{5\pi }{2}\: m/s$$
  • Question 10
    1 / -0
    One end of an ideal spring is fixed to a wall at origin $$O$$ and axis of spring is parallel to $$x-$$axis. A block of mass $$m=1 \ kg$$ is attached to free end of the spring and it is performing $$SHM$$. Equation of position of the block in coordinate system shown in figure is $$x=10+3\sin 10t $$. Here, $$t$$ is in second and $$x$$ in $$cm$$. Another block of mass $$M=3\  kg$$, moving towards the origin with velocity $$30\  cm/s$$ collides with the block performing $$SHM$$ at $$t=0$$ and gets stuck to it calculate. 
    (i) New amplitude of oscillation 
    (ii) New equation for position of the combined body.

    Solution
    From equation $$x=10+3sin(10t)$$ 
    So $$\omega=10$$ and $$A=3$$
    We know $$\omega=\dfrac{k}{m}$$
    $$k=10^2\times 1=100N/m$$
    The  velocity of mass m at t=0 is $$v_1=\omega\times A=10\times 3=30cm/s$$
    Now from momentum conservation 
    $$(M+m)v=30\times M-v_1\times m$$
    $$4v=30\times 3-30\times 1$$
    $$v=15cm/s$$
    Now to find the new amplitude of system
    Let the new amplitude be $$A_1$$
    By conservation of energy 
    $$\dfrac{(M+m)v^2}{2}=\dfrac{kA_1^2}{2}$$
    $$A_1=0.03m=3cm$$
    and new angular velocity of system $$\omega_1=\sqrt{\dfrac{k}{M+m}}$$
    $$\omega=\sqrt{\dfrac{100}{4}}=5rad/s$$
    So the equation is $$x'=10-3sin5t$$
    $$x=3$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now