Self Studies

Oscillations Test - 62

Result Self Studies

Oscillations Test - 62
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    An elastic string of length $$\displaystyle l $$ supports a heavy particle of mass m and the system is in equilibrium with elongation produced being e as shown in the figure. The particle is now pulled down below the equilibrium position through a distance  $$\displaystyle d\left ( \leq e \right )$$ and released. The angular frequency and maximum amplitude for SHM is 

    Solution
    Here, weight of the ball must balance spring force at equilibrium position.
    $$kx=mg\\ ke=mg\\ k=\frac { mg }{ e } $$
    After elongating more, the net restoring force will be, 
    $$F=kd\\ a=\frac { Kd }{ m } \\ a={ \omega  }^{ 2 }x\\ \omega =\sqrt { \frac { k }{ m }  } \\ =\sqrt { \frac { mg }{ em }  } \\ =\sqrt { \frac { g }{ e }  } \\ T=\frac { 2\pi  }{ \omega  } =2\pi \sqrt { \frac { m }{ k }  } $$
    Now, putting the value of K
    $$T=2\pi \sqrt { \frac { m\times e }{ mg }  } \\ T=2\pi \sqrt { \frac { e }{ g }  } \\ g={ \omega  }^{ 2 }A$$ [At extreme position]
    $$g=\frac { g }{ e } \times A\\ A=e$$

  • Question 2
    1 / -0
    A practice is executing SHM. its time period is equal to the smallest time interval in which the particle acquires a particular velocity,$$\bar { v } $$, the magnitude of $$\bar { v } $$ may be:
  • Question 3
    1 / -0
    A particle is performing SHM of amplitude "A" and time period "T". Find the time taken by the particle to go from 0 to A /$$\sqrt{2}$$.
    Solution
    Let equation of SHM be x = A $$\displaystyle \sin \omega t$$
    when x = 0 t = 0  when x = A/2 ; A/2 = A $$\displaystyle \sin \omega t$$
    or $$\displaystyle \sin \omega t=1/2$$                     $$\displaystyle \omega t=\pi /6$$
    $$\displaystyle \frac{2\pi }{T}t=\pi /6$$                t=T/12
    Hence time taken is T/12 where T is time period of SHM
  • Question 4
    1 / -0
    Tow identical springs are connected to mass $$m$$ as shown ($$k=$$ spring constant). IF the period of the configuration in (a) is $$2s$$, the period of the configuration in (b) is

    Solution
    Series combination :       
    Equivalent spring constant:
    $$\Rightarrow k_s  = \dfrac{k_1 \times k_2}{k_1+k_2}  = \dfrac{k \times k}{k+k}   = \dfrac{k}{2}$$
    Time period, $$T_s  =2\pi \sqrt{\dfrac{m}{k_s}}  =  2\pi \sqrt{\dfrac{2m}{k}}$$                  ............(1)

    Parallel combination :       
    Equivalent spring constant:            
    $$\Rightarrow k_p  = k_1 +k_2  = k+k = 2k$$
    Time period, $$T_p  =2\pi \sqrt{\dfrac{m}{k_p}}  =  2\pi \sqrt{\dfrac{m}{2k}}$$                  ............(2)
    $$\Rightarrow $$$$\dfrac{T_p}{T_s}  = \dfrac{1/\sqrt{2}}{\sqrt{2}}  = \dfrac{1}{2}$$
    $$\Rightarrow \dfrac{T_p}{2}  = \dfrac{1}{2}$$                       
    $$\Rightarrow   T_p =  1\ s$$

  • Question 5
    1 / -0
    Two identical springs of spring constant $$k$$ are connected in series and paralIeI as shown in figure. $$A$$ mass $$M$$ is suspended from them. The ratio of their frequencies of vertical oscillation will be :

    Solution
    We know that: $$\displaystyle T=2\pi \sqrt {\frac {m}{K}} \Rightarrow n= \frac {1}{2\pi} \sqrt {\frac {K}{m}}$$
    For a spring mass system.
    In case 1: If $$K$$ is the resultant spring constant, then$$\displaystyle \frac {1}{K} = \frac {1}{k} + \frac {1}{k} = \frac {2}{k} \Rightarrow K = \frac {k}{2}$$
    In case 2, $$K = k + k =2k$$
    If $$n_1$$ & $$n_2$$ be frequencies in two cases, then
    $$\displaystyle n_1 = \frac {1}{2\pi} \sqrt {\frac {k}{2m}}; n_2 = \frac {1}{2\pi} \sqrt {\frac {2k}{m}};$$
    $$\displaystyle \Rightarrow \frac {n_1}{n_2} = \sqrt {\frac {1}{4}} \Rightarrow \frac {n_1}{n_2} = \frac {1}{2}$$
  • Question 6
    1 / -0
    A particle executing simple harmonic motion has an angular frequency of 6.28 $$\displaystyle s^{-1}$$ and amplitude of 10 cm, find the speed at t = 1/6 s assuming that the motion starts from rest at t = 0.
    Solution
    At t = 0 the velocity is zero i.e. the particle is at an extreme The equation for displacement may be written as $$\displaystyle x=A\cos \omega t$$
    The velocity is $$\displaystyle v=-A\omega \sin \omega t$$At             $$\displaystyle t=\frac{1}{6}s$$        $$\displaystyle v=-(0.1m)(6.28s^{-1})\sin \left ( \frac{6.28}{6} \right )$$ $$\displaystyle =(-0.628\: m/s)\sin \frac{\pi }{3}=54.4\: cm/s$$
  • Question 7
    1 / -0
    A particle is moving on a circular track with uniform speed. Its motion is
  • Question 8
    1 / -0

    The left block in figure collides inelastically with the right block and sticks to it. The amplitude of the resulting simple harmonic motion is

    Solution

    Assuming the collision to last for a small interval only we can apply the principle of conservation of momentum The common velocity after the collision is $$\displaystyle \frac{v}{2}$$ The kinetic energy = $$\displaystyle \frac{1}{2}(2m)\left ( \frac{v}{2} \right )^{2}=\frac{1}{4}mv^{2}$$ This is also the total energy of vibration as the spring is unstretched at this moment If the amplitude is A the total energy can also be written as $$\displaystyle \frac{1}{2}kA^{2}$$ Thus $$\displaystyle \frac{1}{2}kA^{2}=\frac{1}{4}mv^{2}$$ giving $$\displaystyle A=\sqrt{\frac{m}{2k}}v$$

  • Question 9
    1 / -0
    A simple harmonic oscillator consist of a block attached to a spring with k = 100 N/m. The block slides on a frictionless horizontal surface, with equilibrium point x = 0. A graph of block's velocity as a function of time is shown. correctly match the two column:- ($$\pi^2 = 10)$$
              List - I                                                                                    List - II   
    (P) The block's mass in Kg                                                   (1) -0.20
    (Q) The block's displacement at t = 0 in meters                   (2) -200   
    (R) The block's acceleration at t =  0.1 s in $$m/s^2$$                (3) 0.20
    (S) The block's maximum kinetic energy in joules                (4) 4.0     
                                   

    Solution
    $$(P)\quad T=2\pi \sqrt { \dfrac { m }{ K }  } \\ 0.1=2\times 3.14\sqrt { \dfrac { m }{ 100 }  } \\ m={ \left( \dfrac { 0.1 }{ 2\times 3.14 }  \right)  }^{ 2 }\times 100\\ m=0.025Kg$$

    $$(Q)$$ From above graph we can get,
    $$v=\pi sin\left( \sqrt { \dfrac { K }{ m }  } t \right) \\ v=\pi sin\left( \sqrt { \dfrac { 100 }{ 0.025 }  } t \right) \\ v=\pi sin\left( 20\sqrt { 10 } t \right) \\ \dfrac { dx }{ dt } =\pi sin\left( 20\sqrt { 10 } t \right) \\ \int _{ o }^{ x }{ dx= } \int _{ 0 }^{ t }{ \pi  } sin\left( 20\sqrt { 10 } t \right) dt\\ x=\dfrac { \pi  }{ 20\sqrt { 10 }  } cos\left( 20\sqrt { 10 } t \right) $$
    at $$t=0 x=-\dfrac { \pi  }{ 20\sqrt { 10 }  } =0.05m$$

    $$(R)\quad a=\dfrac { dv }{ dt } =\pi \sqrt { 10 } \times 20cos\left( 20\sqrt { 10 } t \right) \\ at\quad t=0.1\\ a=198.6\approx 200m/{ s }^{ 2 }$$

    $$(S)\quad { V }_{ max }=\pi \quad [when\quad sin\theta =1]\\ { KE }_{ max }=\dfrac { 1 }{ 2 } \times 0.025\times { \pi  }^{ 2 }\\ =0.125Joule$$



  • Question 10
    1 / -0
    A particle is oscillating simple harmonically with angular frequency $$\omega$$ and amplitude $$A$$. It is at a point (A) at certain instant (shown in figure). At this instant it is moving towards mean positive (B). It takes time $$t$$ to reach position (B). If time period of oscillations is $$T$$, the average speed between $$A$$ and $$B$$ is :

    Solution
    $$x = A\sin \omega t$$

    $$dx = A\omega \cos \omega t \ dt$$

    $$(v) = \dfrac {\int dx}{\int dt}$$

    $$= \dfrac {\int_{0}^{t} A\omega \cos \omega t dt}{\int_{0}^{t} dt}$$

    $$= \dfrac {A\omega \dfrac {\sin \omega t}{\omega}}{t}$$

    $$= \dfrac {A\sin \omega t}{t}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now