$$\begin{array}{l} Given, \\ Diplacement\, \, function\, \, of\, \, the\, \, particle\, \, is, \\ x\left( t \right) =A\cos \left( { \omega t+\phi } \right) \\ x\left( 0 \right) =1\, \, cm\, \, and\, \, \, v\left( 0 \right) \, \, =\pi \, \, \dfrac { { cm } }{ { \sec } } \\ differentiating\, \, w.r.\, \, to\, \, t, \\ v\left( t \right) =-A\left( \omega \right) \sin \left( { \omega t+\varphi } \right) ..........\left( 1 \right) \\ At\, \, t=0, \\ x\left( 0 \right) =A\omega \sin \left( \phi \right) ..........\left( 2 \right) \\ v\left( 0 \right) =-A\omega \sin \left( \phi \right) ............\left( 3 \right) \\ Dividing\, \, \left( 3 \right) \, \, by\, \, \left( 2 \right) , \\ \dfrac { { v\left( 0 \right) } }{ { x\left( 0 \right) } } =-\omega \tan \phi \\ \Rightarrow \pi =-\omega \tan \phi \\ \Rightarrow \tan \phi =-1 \\ i.e\, \, \, \phi =\dfrac { { 3\pi } }{ 4 } \, \, or\, \, \dfrac { { 7\pi } }{ 4 } \\ \sin ce\, \, ,at\, \, \, t=0 \\ x\left( 0 \right) =A\cos \left( \phi \right) =1 \\ \Rightarrow \cos \phi \, \, \, is\, \, \, positive. \\ Therefore\, \, ,\phi =\dfrac { { 7\pi } }{ 4 } \\ \therefore A\cos \left( { \dfrac { { 7\pi } }{ 4 } } \right) =1 \\ \Rightarrow A=\sqrt { 2 } \, \, cm \end{array}$$