Self Studies

Motion in A Straight Line Test - 36

Result Self Studies

Motion in A Straight Line Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A balloon starts rising from the ground, vertically upwards uniformly at the rate of  1 ms1\displaystyle 1\ { ms }^{ -1 } . At the end of 44 seconds, a body was released from the balloon. Calculate the time taken by the released body to reach the ground. Take g= 10 ms2\displaystyle g = 10\ { ms }^{ -2 }
    Solution
    Height of the balloon after 4 sec (h)=vt=4m(h)=vt = 4 m
    And, velocity(u)=1m/s(u) = -1 m/s                (Taking downward direction as positive)
    Now, using 2nd equation of motion s=ut+12t2s=ut+\dfrac{1}{2}t^2
    We have, 
    h=ut+gt22h= ut + \dfrac{gt^2}{2}
    \Rightarrow 4=(1)t+10t224= (-1)t + \dfrac{10t^2}{2}
    \Rightarrow 4=t+5t24= -t + 5t^2
    \Rightarrow 5t2t4=0 5t^2-t-4=0
     (5t+4)(t1)=0\Rightarrow  (5t+4)(t-1)=0
    t=1sec\Rightarrow t=1 sec
    Therefore, B is correct option.
  • Question 2
    1 / -0
    Two stones A and B are dropped from the top of two different towers such that they travel 44.144.1 m and 63.763.7 m in the last second of their motion respectively. Find the ratio of the heights of the two towers from where the stones were dropped.
    Solution
    A stone is dropped from the tower, Let it takes tt seconds to reach the ground.
    Using s=ut+12at2s=ut+\dfrac{1}{2}at^2
    Distance travelled in tt seconds   St=0×t12gt2\Rightarrow  -S_t=0\times t-\frac{1}{2}gt^2  St=12gt2\Rightarrow S_t=\frac{1}{2}gt^2    ....1
    Distance travelled in t1t-1 seconds   St1=0×t12g(t1)2\Rightarrow  -S_{t-1}=0\times t-\frac{1}{2}g(t-1)^2  St1=12g(t1)2\Rightarrow S_{t-1}=\dfrac{1}{2}g(t-1)^2    ....2
    Subtract equation 2 from 1, StSt1=12g(2t1) S_t-S_{t-1}=\dfrac{1}{2}g(2t-1)
    \therefore The distance travelled in last seconds S=12g(2t1)S= \dfrac{1}{2}g(2t-1),
    Let stone A takes time tAt_A and stone B takes time tBt_B.
    44.1=12g(2tA1)\Rightarrow 44.1=\dfrac{1}{2}g(2t_A-1)  tA=5\Rightarrow t_A=5,
    63.7=12g(2tB1)\Rightarrow 63.7=\dfrac{1}{2}g(2t_B-1)  tB=7\Rightarrow t_B=7,
    Using equation 1, 
    Distance travelled by stone A=SA=12g×52=S_A= \dfrac{1}{2}g\times 5^2
    Distance travelled by stone B=SB=12g×72=S_B= \dfrac{1}{2}g\times 7^2
    \therefore SASB=12g×5212g×72=2549\frac{S_A}{S_B}=\dfrac{\dfrac{1}{2}g\times 5^2}{\frac{1}{2}g\times 7^2}=\dfrac{25}{49}  SA:SB=25:49\Rightarrow S_A:S_B= 25:49
  • Question 3
    1 / -0
    An object projected vertically up from the top of the tower took 55 s to reach the ground. The average velocity of the object is  5ms1)\displaystyle 5 { ms }^{ -1 }), find its average speed. (given  g =10 ms1)\displaystyle g\ = 10 { ms }^{ -1 }).
    Solution
    Height of tower= displacement of an object= average velocity ×\times time=5×5=25m=5\times 5=25 m
    Let initial velocity of the object is uu.
    Using s=ut+12at2s=ut+ \dfrac{1}{2}at^2,   25=u×512g×52\Rightarrow -25= u\times 5-\frac{1}{2}g\times 5^2   u=20ms1\Rightarrow u=20 ms^{-1},
    Now from the tower,Let maximum height reached by object is hh.
    At maximum height velocity v=0v=0
    Using v2=u2+2asv^2=u^2+2as  0=2022gh\Rightarrow 0=20^2-2gh  h=20m\Rightarrow h=20m
    \therefore Total distance =2h+25=65m= 2h+25= 65m
    Average speed=Total DistanceTotal Time\text{Average speed}= \dfrac{\text{Total Distance}}{\text{Total Time}}
    \Rightarrow Average speed=655=13ms1=\dfrac{65}{5}=13ms^{-1}
  • Question 4
    1 / -0
    A ball thrown vertically upwards with speed 'u' from the top of a tower reaches the ground in 99 s. Another ball is thrown vertically downwards from the same position with speed 'u', takes 44 s to reach the ground. Calculate the value of 'u' . (Take g=10 ms1)\displaystyle (Take \ g= 10 { ms }^{ -1 }) 
    Solution
    Ball is thrown from the top of tower, height=h\Rightarrow height= -h
    For the first case, velocity = uu , Time t=9st= 9 s
    Using s=ut+12at2s= ut+\frac{1}{2}at^2  h=u×912×10×92\Rightarrow -h= u\times 9- \frac{1}{2} \times 10\times 9^2
    h=9u405\Rightarrow -h= 9u-405   .....1
    For the second case, velocity = u-u , Time t=4st= 4 s
    Using s=ut+12at2s= ut+\frac{1}{2}at^2  h=u×412×10×42\Rightarrow -h= -u\times 4- \frac{1}{2} \times 10\times 4^2
    h=4u80\Rightarrow -h= -4u-80   .....2
    Equating equations 1 and 2, 
    9u405=4u80\Rightarrow 9u-405=-4u-80  u=25ms1\Rightarrow u= 25 ms^{-1}
  • Question 5
    1 / -0
    A ball which is thrown vertically up from the top of the tower reaches the ground in 1212 s. Another ball thrown vertically downwards from the same position with the same velocity takes 44 s to reach the ground. Find the height of the tower. (Take g= 10ms2)\displaystyle (Take\ g = 10 {ms}^{-2} )
    Solution
    Ball is thrown from the top of tower, height=h\Rightarrow height= -h
    For the first case, velocity = uu , Time t=12st= 12 s
    Using s=ut+12at2s= ut+\frac{1}{2}at^2  h=u×1212×10×122\Rightarrow -h= u\times 12- \frac{1}{2} \times 10\times 12^2
    h=12u720\Rightarrow -h= 12u-720   .....1
    For the second case, velocity = u-u , Time t=4st= 4 s
    Using s=ut+12at2s= ut+\frac{1}{2}at^2  h=u×412×10×42\Rightarrow -h= -u\times 4- \frac{1}{2} \times 10\times 4^2
    h=4u80\Rightarrow -h= -4u-80   .....2
    Equating equations 1 and 2, 
    12u720=4u80\Rightarrow 12u-720=-4u-80  u=40ms1\Rightarrow u= 40 ms^{-1}
    Put the value of u=40ms1u=40 ms^{-1} in equation 1, 
    h=12×40720\Rightarrow -h= 12\times 40-720  h=240m\Rightarrow h=240m
  • Question 6
    1 / -0
    A body is dropped from a certain height 'h' meters. Assuming that the gravitational field is nullified, after the body has travelled h2\dfrac{h}{2} meters such that g =0,= 0, discuss the motion of the body. Find an expression for the time taken by the body to reach the ground.   
    Solution
    Till h2\dfrac{h}{2} meter,
    s=12gt2s=\dfrac { 1 }{ 2 } g{ t }^{ 2 }
    t=2sg =2×h2 g =hg t=\sqrt { \dfrac { 2s }{ g }  } =\sqrt { \dfrac { 2\times \dfrac { h }{ 2 }  }{ g }  } =\sqrt { \dfrac { h }{ g }  }
    so to cover h2\dfrac{h}{2} meter with a=g,the time taken t1=hg { t }_{ 1 }=\sqrt { \dfrac { h }{ g }  } \\
    After that a=0
    v(att=hg )=gt1=ghg =ghv(at\quad t=\sqrt { \dfrac { h }{ g }  } )=g{ t }_{ 1 }=g\sqrt { \dfrac { h }{ g }  } =\sqrt { gh }
    with this contant speed,particle will travel next h2\dfrac{h}{2} meter.
    t2=h2 gh =12hg t=t1+t2=hg +12hg =32hg { t }_{ 2 }=\dfrac { \dfrac { h }{ 2 }  }{ \sqrt { gh }  } =\dfrac { 1 }{ 2 } \sqrt { \dfrac { h }{ g }  } \\ t={ t }_{ 1 }+{ t }_{ 2 }=\sqrt { \dfrac { h }{ g }  } +\dfrac { 1 }{ 2 } \sqrt { \dfrac { h }{ g }  } =\dfrac { 3 }{ 2 } \sqrt { \dfrac { h }{ g }  }
  • Question 7
    1 / -0
    A ball thrown vertically upwards with speed 'u' from the top of a tower reaches the ground in 99 s. Another ball is thrown vertically downwards from the same position with speed 'u'. take 44 s to reach the ground. Calculate the value of 'u'. (Takeg=10 ms2)\displaystyle (Take \quad g = 10 { ms }^{ -2 }) 
    Solution
    Ball is thrown from the top of tower, height=h\Rightarrow height= -h
    For the first case, velocity = uu , Time t=9st= 9 s
    Using s=ut+12at2s= ut+\frac{1}{2}at^2  h=u×912×10×92\Rightarrow -h= u\times 9- \frac{1}{2} \times 10\times 9^2
    h=9u405\Rightarrow -h= 9u-405   .....1
    For the second case, velocity = u-u , Time t=4st= 4 s
    Using s=ut+12at2s= ut+\frac{1}{2}at^2  h=u×412×10×42\Rightarrow -h= -u\times 4- \frac{1}{2} \times 10\times 4^2
    h=4u80\Rightarrow -h= -4u-80   .....2
    Equating equations 1 and 2, 
    9u405=4u80\Rightarrow 9u-405=-4u-80  u=25ms1\Rightarrow u= 25 ms^{-1}
  • Question 8
    1 / -0
    For ordinary terrestrial experiments, the observer in an inertial frame in the following cases is 
    Solution
    A and D options experience centripetal acceleration.
    C experience linear acceleration
    and a inertial frame n=must be non-accelerating .
    B is non-accelerating hence correct answer.
  • Question 9
    1 / -0

    A ball is thrown upwards. Its height varies with time as follows:

    If the acceleration due to gravity is 7.5  m/s27.5   {m}/{{s}^{2}}, then the height hh is :

    Solution

    Velocity at highest point becomes zero

     0=uat\therefore  0 = u- at

    or  u=atu = at

    =7.5×3.5=62.25m/s= 7.5 \times 3.5 = 62.25 {m}/{s}
    y1=u×112×7.5×12{y}_{1} = u \times 1 - \displaystyle\frac{1}{2} \times 7.5 \times {1}^{2}

    y2=u×212×7.5×22{y}_{2} = u \times 2 - \displaystyle\frac{1}{2} \times 7.5 \times {2}^{2}

    h=y2y1=15h = {y}_{2}- {y}_{1} = 15

  • Question 10
    1 / -0
    A coin tossed in the air with a velocity of 30 m/s reaches back to the thrower in 0.4 sec. What is the highest point reached by the coin?
    Solution
    Given: 
    Initial velocity = 30m/s30 m/s
    Final velocity = 0m/s0 m/s
    Time = 0.4sec0.4 sec. (to return back)
    \therefore time for upward motion =0.42=0.2=\dfrac{0.4}{2} = 0.2 
    Acceleration due to gravity = 9.8m/s-9.8 m/s2^2
    By using the formula,s=ut+12gt2s=ut+\frac{1}{2} gt^2
    s=30×0.2+12×9.8×(0.2)2s=30\times 0.2 +\frac{1}{2}\times -9.8 \times (0.2)^2
    s=60.196s=6-0.196
    s=5.80ms=5.80 m
    The maximum height reached by the coin is 5.80m5.80 m
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now