Self Studies

Motion in A Straight Line Test - 36

Result Self Studies

Motion in A Straight Line Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A balloon starts rising from the ground, vertically upwards uniformly at the rate of $$\displaystyle 1\ { ms }^{ -1 }$$ . At the end of $$4$$ seconds, a body was released from the balloon. Calculate the time taken by the released body to reach the ground. Take $$\displaystyle g = 10\ { ms }^{ -2 }$$
    Solution
    Height of the balloon after 4 sec $$(h)=vt = 4 m$$
    And, velocity$$(u) = -1 m/s$$                (Taking downward direction as positive)
    Now, using 2nd equation of motion $$s=ut+\dfrac{1}{2}t^2$$
    We have, 
    $$h= ut + \dfrac{gt^2}{2}$$
    $$\Rightarrow $$$$4= (-1)t + \dfrac{10t^2}{2}$$
    $$\Rightarrow $$$$4= -t + 5t^2$$
    $$\Rightarrow $$ $$ 5t^2-t-4=0$$
    $$\Rightarrow  (5t+4)(t-1)=0$$
    $$\Rightarrow t=1 sec$$
    Therefore, B is correct option.
  • Question 2
    1 / -0
    Two stones A and B are dropped from the top of two different towers such that they travel $$44.1$$ m and $$63.7$$ m in the last second of their motion respectively. Find the ratio of the heights of the two towers from where the stones were dropped.
    Solution
    A stone is dropped from the tower, Let it takes $$t$$ seconds to reach the ground.
    Using $$s=ut+\dfrac{1}{2}at^2$$, 
    Distance travelled in $$t$$ seconds  $$\Rightarrow  -S_t=0\times t-\frac{1}{2}gt^2$$  $$\Rightarrow S_t=\frac{1}{2}gt^2$$    ....1
    Distance travelled in $$t-1$$ seconds  $$\Rightarrow  -S_{t-1}=0\times t-\frac{1}{2}g(t-1)^2$$  $$\Rightarrow S_{t-1}=\dfrac{1}{2}g(t-1)^2$$    ....2
    Subtract equation 2 from 1, $$ S_t-S_{t-1}=\dfrac{1}{2}g(2t-1)$$
    $$\therefore $$ The distance travelled in last seconds $$S= \dfrac{1}{2}g(2t-1)$$,
    Let stone A takes time $$t_A$$ and stone B takes time $$t_B$$.
    $$\Rightarrow 44.1=\dfrac{1}{2}g(2t_A-1)$$  $$\Rightarrow t_A=5$$,
    $$\Rightarrow 63.7=\dfrac{1}{2}g(2t_B-1)$$  $$\Rightarrow t_B=7$$,
    Using equation 1, 
    Distance travelled by stone A$$=S_A= \dfrac{1}{2}g\times 5^2$$
    Distance travelled by stone B$$=S_B= \dfrac{1}{2}g\times 7^2$$
    $$\therefore$$ $$\frac{S_A}{S_B}=\dfrac{\dfrac{1}{2}g\times 5^2}{\frac{1}{2}g\times 7^2}=\dfrac{25}{49}$$  $$\Rightarrow S_A:S_B= 25:49$$
  • Question 3
    1 / -0
    An object projected vertically up from the top of the tower took $$5$$ s to reach the ground. The average velocity of the object is  $$\displaystyle 5 { ms }^{ -1 })$$, find its average speed. (given  $$\displaystyle g\ = 10 { ms }^{ -1 })$$.
    Solution
    Height of tower= displacement of an object= average velocity $$\times $$ time$$=5\times 5=25 m$$, 
    Let initial velocity of the object is $$u$$.
    Using $$s=ut+ \dfrac{1}{2}at^2$$,   $$\Rightarrow -25= u\times 5-\frac{1}{2}g\times 5^2$$   $$\Rightarrow u=20 ms^{-1}$$,
    Now from the tower,Let maximum height reached by object is $$h$$.
    At maximum height velocity $$v=0$$, 
    Using $$v^2=u^2+2as$$  $$\Rightarrow 0=20^2-2gh$$  $$\Rightarrow h=20m$$, 
    $$\therefore $$ Total distance $$= 2h+25= 65m$$
    $$\text{Average speed}= \dfrac{\text{Total Distance}}{\text{Total Time}}$$, 
    $$\Rightarrow $$ Average speed$$=\dfrac{65}{5}=13ms^{-1}$$
  • Question 4
    1 / -0
    A ball thrown vertically upwards with speed 'u' from the top of a tower reaches the ground in $$9$$ s. Another ball is thrown vertically downwards from the same position with speed 'u', takes $$4$$ s to reach the ground. Calculate the value of 'u' . $$\displaystyle (Take \ g= 10 { ms }^{ -1 })$$ 
    Solution
    Ball is thrown from the top of tower, $$\Rightarrow height= -h$$, 
    For the first case, velocity = $$u$$ , Time $$t= 9 s$$, 
    Using $$s= ut+\frac{1}{2}at^2$$  $$\Rightarrow -h= u\times 9- \frac{1}{2} \times 10\times 9^2$$
    $$\Rightarrow -h= 9u-405$$   .....1
    For the second case, velocity = $$-u$$ , Time $$t= 4 s$$, 
    Using $$s= ut+\frac{1}{2}at^2$$  $$\Rightarrow -h= -u\times 4- \frac{1}{2} \times 10\times 4^2$$
    $$\Rightarrow -h= -4u-80$$   .....2
    Equating equations 1 and 2, 
    $$\Rightarrow 9u-405=-4u-80$$  $$\Rightarrow u= 25 ms^{-1}$$
  • Question 5
    1 / -0
    A ball which is thrown vertically up from the top of the tower reaches the ground in $$12$$ s. Another ball thrown vertically downwards from the same position with the same velocity takes $$4$$ s to reach the ground. Find the height of the tower. $$\displaystyle (Take\ g = 10 {ms}^{-2} ) $$
    Solution
    Ball is thrown from the top of tower, $$\Rightarrow height= -h$$, 
    For the first case, velocity = $$u$$ , Time $$t= 12 s$$, 
    Using $$s= ut+\frac{1}{2}at^2$$  $$\Rightarrow -h= u\times 12- \frac{1}{2} \times 10\times 12^2$$
    $$\Rightarrow -h= 12u-720$$   .....1
    For the second case, velocity = $$-u$$ , Time $$t= 4 s$$, 
    Using $$s= ut+\frac{1}{2}at^2$$  $$\Rightarrow -h= -u\times 4- \frac{1}{2} \times 10\times 4^2$$
    $$\Rightarrow -h= -4u-80$$   .....2
    Equating equations 1 and 2, 
    $$\Rightarrow 12u-720=-4u-80$$  $$\Rightarrow u= 40 ms^{-1}$$
    Put the value of $$u=40 ms^{-1}$$ in equation 1, 
    $$\Rightarrow -h= 12\times 40-720$$  $$\Rightarrow h=240m$$
  • Question 6
    1 / -0
    A body is dropped from a certain height 'h' meters. Assuming that the gravitational field is nullified, after the body has travelled $$\dfrac{h}{2}$$ meters such that g $$= 0, $$discuss the motion of the body. Find an expression for the time taken by the body to reach the ground.   
    Solution
    Till $$\dfrac{h}{2}$$ meter,
    $$s=\dfrac { 1 }{ 2 } g{ t }^{ 2 }$$
    $$t=\sqrt { \dfrac { 2s }{ g }  } =\sqrt { \dfrac { 2\times \dfrac { h }{ 2 }  }{ g }  } =\sqrt { \dfrac { h }{ g }  } $$
    so to cover $$\dfrac{h}{2}$$ meter with a=g,the time taken $${ t }_{ 1 }=\sqrt { \dfrac { h }{ g }  } \\ $$
    After that a=0
    $$v(at\quad t=\sqrt { \dfrac { h }{ g }  } )=g{ t }_{ 1 }=g\sqrt { \dfrac { h }{ g }  } =\sqrt { gh } $$
    with this contant speed,particle will travel next $$\dfrac{h}{2}$$ meter.
    $${ t }_{ 2 }=\dfrac { \dfrac { h }{ 2 }  }{ \sqrt { gh }  } =\dfrac { 1 }{ 2 } \sqrt { \dfrac { h }{ g }  } \\ t={ t }_{ 1 }+{ t }_{ 2 }=\sqrt { \dfrac { h }{ g }  } +\dfrac { 1 }{ 2 } \sqrt { \dfrac { h }{ g }  } =\dfrac { 3 }{ 2 } \sqrt { \dfrac { h }{ g }  } $$
  • Question 7
    1 / -0
    A ball thrown vertically upwards with speed 'u' from the top of a tower reaches the ground in $$9$$ s. Another ball is thrown vertically downwards from the same position with speed 'u'. take $$4$$ s to reach the ground. Calculate the value of 'u'. $$\displaystyle (Take \quad g = 10 { ms }^{ -2 })$$ 
    Solution
    Ball is thrown from the top of tower, $$\Rightarrow height= -h$$, 
    For the first case, velocity = $$u$$ , Time $$t= 9 s$$, 
    Using $$s= ut+\frac{1}{2}at^2$$  $$\Rightarrow -h= u\times 9- \frac{1}{2} \times 10\times 9^2$$
    $$\Rightarrow -h= 9u-405$$   .....1
    For the second case, velocity = $$-u$$ , Time $$t= 4 s$$, 
    Using $$s= ut+\frac{1}{2}at^2$$  $$\Rightarrow -h= -u\times 4- \frac{1}{2} \times 10\times 4^2$$
    $$\Rightarrow -h= -4u-80$$   .....2
    Equating equations 1 and 2, 
    $$\Rightarrow 9u-405=-4u-80$$  $$\Rightarrow u= 25 ms^{-1}$$
  • Question 8
    1 / -0
    For ordinary terrestrial experiments, the observer in an inertial frame in the following cases is 
    Solution
    A and D options experience centripetal acceleration.
    C experience linear acceleration
    and a inertial frame n=must be non-accelerating .
    B is non-accelerating hence correct answer.
  • Question 9
    1 / -0

    A ball is thrown upwards. Its height varies with time as follows:

    If the acceleration due to gravity is $$7.5   {m}/{{s}^{2}}$$, then the height $$h$$ is :

    Solution

    Velocity at highest point becomes zero

    $$\therefore  0 = u- at$$

    or  $$u = at$$

    $$= 7.5 \times 3.5 = 62.25 {m}/{s}$$
    $${y}_{1} = u \times 1 - \displaystyle\frac{1}{2} \times 7.5 \times {1}^{2}$$

    $${y}_{2} = u \times 2 - \displaystyle\frac{1}{2} \times 7.5 \times {2}^{2}$$

    $$h = {y}_{2}- {y}_{1} = 15$$

  • Question 10
    1 / -0
    A coin tossed in the air with a velocity of 30 m/s reaches back to the thrower in 0.4 sec. What is the highest point reached by the coin?
    Solution
    Given: 
    Initial velocity = $$30 m/s$$
    Final velocity = $$0 m/s$$
    Time = $$0.4 sec$$. (to return back)
    $$\therefore$$ time for upward motion $$=\dfrac{0.4}{2} = 0.2$$ 
    Acceleration due to gravity = $$-9.8 m/s$$$$^2$$
    By using the formula,$$s=ut+\frac{1}{2} gt^2$$
    $$s=30\times 0.2 +\frac{1}{2}\times -9.8 \times (0.2)^2$$
    $$s=6-0.196$$
    $$s=5.80 m$$
    The maximum height reached by the coin is $$5.80 m$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now