Let initial velocity of bullet$$={ V }_{ 1 }㎧$$
Velocity with which each plate moves$$={ V }_{ 2 }㎧$$
According to the law of conservation of momentum the initial momentum of the bullet is equal to the sum of the final momentum of the second plate including the bullet
$$\therefore m{ V }_{ 1 }={ M }_{ 1 }{ V }_{ 2 }+\left( { M }_{ 2 }+m \right) { V }_{ 2 }$$
$$20{ V }_{ 1 }=1\times { V }_{ 2 }+\left( 2.98+20 \right) { V }_{ 2 }$$
$$20{ V }_{ 1 }={ V }_{ 2 }+22.98{ V }_{ 2 }$$
$${ V }_{ 1 }=\cfrac { 23.98 }{ 20 } { V }_{ 2 }$$
$${ V }_{ 1 }=1.199{ V }_{ 2 }\rightarrow 1$$
Let the velocity of bullet when it comes out of first plate$$={ V }_{ 3 }$$
The momentum of the bullet the first and second, a plate is equal to the sum of the momentum of the second plate and the bullet.
$$20{ V }_{ 3 }=\left( 20+2.980{ V }_{ 2 } \right) $$
$$20{ V }_{ 3 }=22.98{ V }_{ 2 }$$
$$\therefore { V }_{ 3 }=1.149{ V }_{ 2 }\rightarrow 2$$
Loss Percentage in the initial velocity of the bullet when it is moving between $${ m }_{ 1 }\& { m }_{ 2 }$$ is expressed as the following
Loss %$$=\cfrac { { V }_{ 1 }-{ V }_{ 3 } }{ { V }_{ 1 } } \times 100$$
Loss %$$=\cfrac { 1.199{ V }_{ 2 }-1.149{ V }_{ 2 } }{ 1.199{ V }_{ 2 } } \times 100$$
Loss %$$=\cfrac { 0.05 }{ 1.199 } \times 100$$
$$=5.995$$%