Self Studies

System of Particles and Rotational Motion Test - 25

Result Self Studies

System of Particles and Rotational Motion Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A circular ring is rotating about an axis passing through its diameter. If its radius of gyration is 10 cm10  cm, diameter of the ring is:
    Solution
    By perpendicular axis theorem, moment of inertia about any two perpendicular axis is sum of moment of inertia's about any two areas in the plane
               I=I1+I2I=I_1+I_2
           2(I1)=MR22(I_1)=MR^2 for a ring.
           I1=MR22=M(R2)2I_1=\dfrac{MR^2}{2}=M\left ( \dfrac{R}{\sqrt{2}} \right )^2
    with radius of gyration R2=10\dfrac{R}{\sqrt{2}}=10
           R=102\Rightarrow R=10\sqrt{2}
    diameter=202\therefore diameter=20\sqrt{2}
  • Question 2
    1 / -0
    A circular disc of radius 10 cm10 \ cm is free to rotate about an axis passing through its centre without friction and its moment of inertia is 12π  kg m2\dfrac{1}{2}\pi  \ kg\ m^{2}. A tangential force of 20 N20  N is acting on the disc along its rim.  Starting from rest, the number of rotations made by the disc in 10 s10 \ s is:
    Solution
    Torque on the disc τ=F×R=20×0.1=2Nm\tau ={F}\times{R}=20\times0.1=2Nm
    Given moment of inertia I=12πkgm2I=\dfrac{1}{2\pi }kgm^2
       τ=Iα\tau =I\alpha
    α=4π rads2\Rightarrow \alpha =4\pi  rads^{-2}
    No. of rotations made =(12αt2 )2π=\dfrac{\left (\dfrac{1}{2}\:\alpha\: t^2  \right )}{2\pi }    (by the 1st law of uniform angular rotation)

                                      =12×4π×1002π=\dfrac{\dfrac{1}{2}\times 4\pi \times 100 }{2\pi }

                                      =100=100
  • Question 3
    1 / -0
    The moment of inertia of thin rod is 2×103kgm22\times 10^{-3}kgm^{2} when it is made to rotate about an axis perpendicular to the length of rod and passing through one end. If half length of the rod is cut and removed then the moment of inertia of remaining rod is:
    Solution
    Moment of Inertia about one end =ML23=\dfrac{ML^2}{3}
    When half the rod is cut M=M2M'=\dfrac{M}{2} and L=L2L'=\dfrac{L}{2}

    I=13M2(L2)2=ML23(8)=I8=2×1038kgm2\displaystyle\therefore I=\frac{1}{3}\frac{M}{2}\left (\frac{L}{2}\right )^2=\frac{ML^2}{3(8)}=\frac{I}{8}=\frac{2\times 10^{-3}}{8}kgm^2

           =0.25×103kgm2=0.25\times 10^{-3}kgm^2
  • Question 4
    1 / -0
    A circular disc is rotating about its own natural axis. A constant opposing torque 2.75 Nm2.75  N m is applied on the disc due to which it comes to rest in 2828 rotations. If moment of inertia of disc is 0.5 kgm20.5  kgm^{2}, the initial angular velocity of disc is:
    Solution
    we know that τ=Iα \tau =I\alpha
                    α=τI=2.75Nm0.5=5.5rads2\Rightarrow \alpha =\dfrac{ \tau }{I}=\dfrac{2.75Nm}{0.5}=5.5\:rads^{-2}
    given no of rotations =28=28
                     Totalangleθ=28(2π)=56π\therefore Total\:angle\:\theta =28(2\pi )=56\pi
    ω2=2αθ\omega^2=2\alpha \theta
    ω2=2×5.5×56π \Rightarrow \omega^2=2\times 5.5 \times 56\pi 
            ω=43.99rad/s\omega=43.99\:rad/s
                  =43.99×602πrpm=420  rpm=43.99\times \dfrac{60}{2\pi }rpm=420\;rpm
  • Question 5
    1 / -0
    A wheel of radius 10 cm10  cm can rotate freely about an axis passing through its centre. A force 20 N20  N acts tangentially at the rim of wheel. If moment of inertia of wheel is  0.5 kgm20.5  kgm^{2}, its angular acceleration is:
    Solution
    Torque on the wheel τ=F×R\tau =\vec{F}\times \vec{R}
    as F is applied at rim.
    τ=20×0.1=2Nm\Rightarrow \tau =20\times 0.1=2Nm
    Moment of Inertia I=0.5kgm2I=0.5kgm^2
       τ=Iα\tau =I\alpha
    α=τI=20.5=4rad/s2\Rightarrow \alpha=\dfrac{\tau }{I}=\dfrac{2}{0.5}=4rad/s^2
  • Question 6
    1 / -0
    A ceiling fan is rotating at the rate of 3.5 rps3.5  rps and its moment of inertia is 1.25 kgm21.25  kgm^{2}. If the current is switched off, the fan comes to rest in 5.5 s5.5  s. The torque acting on the fan due to friction is:
    Solution
    τ=Iα \tau =I\alpha
    α=dωdt=3.5×2π 5.5=4\alpha =\dfrac{d\omega }{dt}=\dfrac{3.5\times 2\pi  }{5.5}=4
    τ=Iα=1.25×4=5  Nm\therefore \tau =I\alpha =1.25\times4=5  \ Nm
  • Question 7
    1 / -0
    The radius of gyration of rod of length LL and mass MM about an axis perpendicular to its length and passing through a point at a distance L3\dfrac{L}{3} from one of its ends is:
    Solution
    Moment of inertia of rod about cm ,Icm=ML212Icm=\dfrac{ML^2}{12} 
    Distance of point from cm d=l/2l/3=l/6l/2-l/3=l/6
    So, Moment of inertia at that point I=Icm+Md2=ML212+ML236=ML29I=Icm+Md^2=\dfrac{ML^2}{12}+\dfrac{ML^2}{36}=\dfrac{ML^2}{9}
    So ML2/9=MK2K=L/3ML^2/9=MK^2\Rightarrow K=L/3
  • Question 8
    1 / -0
    Identify the increasing order of the radius of gyration of following bodies of same radius:
    I) About natural axis of circular ring.
    II) About diameter of circular ring.
    III) About diameter of circular plate.
    IV) About diameter of solid sphere.
    Solution
    (1) about Neutral axis of circular ring \to
    MR2MRg2MR^{2}MRg^{2}
    Rg=RRg=R

    (2) about diameter of circular ring \to
    MR22=MRg2\dfrac{MR^{2}}{2}=MRg^{2}

    Rg=R2=0.707RRg=\dfrac{R}{\sqrt{2}}=0.707 R

    (3) about diameter of circular plate \to
    MR24=MRg2\dfrac{MR^{2}}{4}=MRg^{2}

    Rg=R2=0.5RRg=\dfrac{R}{2}=0.5 R

    (4) about diameter of solid sphere \to
    MR25=MRg2\dfrac{MR^{2}}{5}=MRg^{2}

    Rg=25R=0.63RRg=\sqrt{\dfrac{2}{5}}R=0.63 R

    Ans. (III)<(IV)<(II)<(I)(III)<(IV)<(II)<(I)
  • Question 9
    1 / -0
    A constant torque of 1000 Nm1000  N m turns a wheel of moment of inertia 200 kgm2200  kgm^{2} about an axis through its centre. The wheel is at rest initially. Its angular velocity after 3 s3  s is :
    Solution
    We know that T=IαT=I\alpha
    1000=200×αα=5rad/s21000=200\times \alpha\Rightarrow \alpha =5rad/s^2
    now we know ω=ωo+αt\omega=\omega_o+\alpha t, andωo=0\omega_o=0
    ω=5×3=15 rads1\omega=5\times 3=15\ rads^{-1}
  • Question 10
    1 / -0
    Identify the decreasing order of moments of inertia of the following bodies of same mass and radius.
    I) about diameter of circular ring
    II) about diameter of circular plate
    III) about tangent of circular ring perpendicular to its plane
    IV) about tangent of circular plate in its plane
    Solution
    Moment of inertia  about diameter of circular ring I1=mr22I_1=\dfrac{mr^2}{2}
    Moment of inertia  about diameter of circular plate I2=mr24I_2=\dfrac{mr^2}{4}
    Moment of inertia  about tangent of circular ring perpendicular to its plane I3=mr2+mr2=2mr2I_3=mr^2+mr^2=2mr^2
    Moment of inertia  about tangent of circular plate in its plane I4=mr2/4+mr2=5mr24I_4=mr^2/4+mr^2=\dfrac{5mr^2}{4}
    So I3>I4>I1>I2I_3>I_4>I_1>I_2

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now