Self Studies

Mechanical Properties of Solids Test - 43

Result Self Studies

Mechanical Properties of Solids Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A metal wire of length l, area of cross-section A and Young's modulus Y behaves as a spring of spring constant k given by.
    Solution

  • Question 2
    1 / -0
    The increase in pressure required in kPakPa, to decrease the 200200 litres volume of a liquid by 0.0040.004% is (bulk modulus of the liquid =2100 MPa= 2100\ MPa)
    Solution
    Bulk modulus of elasticity is defined as the ratio of normal stress to the volumetric strain, within the elastic limit.
    Thus,
    B=normal stressvolumetric strainB = \dfrac {\text {normal stress}}{\text {volumetric strain}}
    B=pV/VB = \dfrac {\triangle p}{-\triangle V/V}
    Here, negative sign shows that volume is decreased, when pressure is increased.
    Here, B=2100×106PaB = 2100\times 10^{6} Pa
    V=200 LV = 200\ L
    V=200×0.004100=0.008 L\triangle V = 200\times \dfrac {0.004}{100} = 0.008\ L
    2100×106=p(0.008200)\therefore 2100\times 10^{6} = \dfrac {\triangle p}{\left (\dfrac {0.008}{200}\right )}
    p=84kPa\therefore \triangle p = 84 kPa
    Compressibility (C) of a material is the reciprocal of its bulk modulus of elasticity (B) ie,
    C=1BC = \dfrac {1}{B}
  • Question 3
    1 / -0
    Four wires of the same material are stretched by the same load. Which one of them will elongate most if their dimensions are as follows
    Solution
     L=length of the wire r= radius of the wine Y is same for all as made up of  same material \begin{array}{l}\text { L=length of the wire } \\r=\text { radius of the wine } \\Y \text { is same for all as made up of } \\\text { same material }\end{array}


    Y=F/Adlldl=FlAY=(fγ)×λπr2Y=\frac{F / A}{\frac{d l}{l}} \Rightarrow d l=\frac{F l}{A Y}=\left(\frac{f}{\gamma}\right) \times \frac{\lambda}{\pi r^{2}}

    dl=clπr2(er2)dl checking options we get (L=100 cm&r=lmm) wire elongate most  \begin{aligned}\therefore d l &=\frac{c l}{\pi r^{2}} \\\therefore\left(\frac{e}{r^{2}}\right) \uparrow \Rightarrow d l \uparrow & \\\therefore \text { checking options we get }(L=100 \mathrm{~cm} \& r=\operatorname{lm} m) \text { wire elongate most} \\\text {  }\end{aligned}
    Hence option A is correct

  • Question 4
    1 / -0
    The energy stored per unit volume in copper wire, which produces longitudinal strain of 0.10.1% is: (Y=1.1×1011N/m2)\left( Y=1.1\times { 10 }^{ 11 }{ N }/{ { m }^{ 2 } } \right)
    Solution
    When a wire is stretched, some work is done against the internal restoring forces, acting between particles of the wire. This work done appears as elastic potential energy in the wire. Elastic potential energy (U)\left( U \right) is given by
      U=12F×ΔlU=\dfrac { 1 }{ 2 } F\times \Delta l
         =12×Fa×Δll×al=\dfrac { 1 }{ 2 } \times \dfrac { F }{ a } \times \dfrac { \Delta l }{ l } \times al                        ......(i)
    where ll is length of wire, aa is area of cross section of wire, FF is stretching force and Δl\Delta l is increase in length.
    Equation (i), may be written as
    U=12×U = \dfrac{1}{2} \times stress ×\times strain ×\times volume of the wire
    \therefore Elastic potential energy per unit volume of the wire
    u=Ual=12×u = \dfrac{U}{al} = \dfrac{1}{2} \times stress ×\times strain
    =12×= \dfrac{1}{2} \times (Young's modulus ×\times strain) ×\times strain
    =12×(Y)×(strain) 2=\dfrac { 1 }{ 2 } \times \left( Y \right) \times { \left( strain \right)  }^{ 2 }
    Hence, u=12×1.1×1011×(0.1100 ) 2u=\dfrac { 1 }{ 2 } \times 1.1\times { 10 }^{ 11 }\times { \left( \dfrac { 0.1 }{ 100 }  \right)  }^{ 2 }
       =5.5×104J/m3=5.5\times { 10 }^{ 4 }{ J }/{ { m }^{ 3 } }
  • Question 5
    1 / -0
    Young's modulus of the material of a wire is Y. If it is under a stress S, the energy stored per unit volume is given by:
    Solution
    Energy stored per unit volume can be given as: 
     E =12×stress×strainE  =\dfrac{1}{2} \times stress \times strain -----------(1)      
    From Hooke's law :
    Young's modulus, Y=StressStrainY = \dfrac{Stress}{Strain}

        \implies    Strain =StressY =SYStrain   = \dfrac{Stress}{Y}   = \dfrac{S}{Y} -----------(2) 
      
    From equation (1) and (2): 
    \therefore    E=12×S×SYE = \dfrac{1}{2} \times S \times \dfrac{S}{Y}

    E= 12S2Y\Rightarrow E=  \dfrac{1}{2} \dfrac{S^2}{Y}
    Hence, the correct option is (B)(B)
  • Question 6
    1 / -0
    There is no change in volume of a wire due to change in its length of stretching. The Poisson's ratio of the material of the wire is:
    Solution
    Hint: The negative of the ratio of transverse strain to lateral or axial strain is Poisson's ratio. 
    Explanation:
    Step 1: Concept used:

    Volume of a wire of radius rr and length ll is,
    V=πr2lV=\pi{r}^{2}l     .........................(1)
    Differentiate the equation from both sides-
    dV=2πrldr+πr2dl\therefore dV=2\pi rldr + \pi{r}^{2}dl
    (dV=0,(dV=0, as volume is unchanged))
    0=2πrldr+πr2dl0=2\pi rldr + \pi{r}^{2}dl
    2rldr=r2dl\therefore 2rldr = -{r}^{2}dl
    drr=12dll\cfrac{dr}{r}= -\cfrac{1}{2} \cfrac{dl}{l}

    Step 2: Calculating the Poisson's ratio:

    “The ratio of transverse contraction strain to longitudinal extension strain in the direction of the stretching force,” as defined by Poisson.

    η=Transverse strainLongitudional strain \eta = \frac{Transverse\ strain}{Longitudional\ strain}
    drrdll=12\therefore \cfrac{\cfrac{dr}{r}}{\cfrac{dl}{l}}=-\cfrac{1}{2}
    σ=12\therefore \sigma= -\cfrac{1}{2}
    As, here ve-ve sign implies that if, length increased, radius decreased, so, we can write
    σ=12=0.5\sigma=\cfrac{1}{2}=0.5

    Option A is correct.
  • Question 7
    1 / -0
    The value of Poisson's ratio (theoretically) lies between
    Solution

  • Question 8
    1 / -0
    Bulk modulus of water is 2×109N/m22\times 10^9N/m^2. The change in pressure required to increase the density of water by 0.1%0.1\% is.
    Solution
    Mass=volume×density=Vd=constantMass=volume\times density=Vd=constant
    VΔd+dΔV=0V\Delta d+d\Delta V=0

    ΔVV=Δdd=0.1100=103\Rightarrow \displaystyle\frac{\Delta V}{V}=-\frac{\Delta d}{d}=-\frac{0.1}{100}=10^{-3}

    K=ΔpΔV/V\therefore K=-\displaystyle\frac{\Delta p}{\Delta V/V}

    Δp=KΔVV\Rightarrow \Delta p=-K\frac{\Delta V}{V}

    Δp=2×109×103\Delta p=2\times 10^9\times 10^{-3}
    =2×106N/m2=2\times 10^6N/m^2
  • Question 9
    1 / -0
    A wire of initial length LL and radius rr is stretched by a length ll. Another wire of same material but with initial length 2L2L and radius 2r2r is stretched by a length 2l2l. The ratio of stored elastic energy per unit volume in the first and second wire is:
    Solution
    Elastic energy per unit volume of wire
    μ=12×Y×(Strain)2\mu =\cfrac { 1 }{ 2 } \times Y \times { (Strain) }^{ 2 }
    μ1μ2={(Strain)1(Strain)2 } 2=l2L2×4L24l2= 1:1\therefore \cfrac { { \mu }_{ 1 } }{ { \mu }_{ 2 } } ={ \left\{ \cfrac { { (Strain) }_{ 1 } }{ { (Strain) }_{ 2 } }  \right\}  }^{ 2 }=\cfrac { { l }^{ 2 } }{ { L }^{ 2 } } \times \cfrac { 4{ L }^{ 2 } }{ { 4l }^{ 2 } } =  1:1
  • Question 10
    1 / -0
    In Young's double slit experiment, the ratio of intensities of bright and dark bands is 1616 which means
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now