Self Studies

Mechanical Properties of Solids Test - 61

Result Self Studies

Mechanical Properties of Solids Test - 61
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A metal rod of Young's modulus $$2\times { 10 }^{ 10 }N{ m }^{ -2 }$$ undergoes an elastic strain of 0.02%. The energy per unit volume stored in the rod, in $$Joules$$ is ?
    Solution
    $$\text{Energy per unit voume = Energy density}$$
    $$\begin{array}{l}=\dfrac{1}{2} \times \text { stress } \times \text { strain } \\=\dfrac{1}{2}\times\dfrac{F}{A} \times \dfrac{\Delta l}{l}\\=\dfrac{1}{2} \times\left(\dfrac{\gamma}{l}\right)\left(\dfrac{\Delta l}{l}\right) \\=\dfrac{1}{2} Y\left(\dfrac{\Delta l}{l}\right)^{2} \\=\dfrac{1}{2} \times 2 \times 10^{10} \times\left(\dfrac{0.02}{100}\right)^{2}\end{array}$$
    $$=400 \mathrm{Joule}$$
    $$\text{Ans: (A)}$$
  • Question 2
    1 / -0
    A wire elongates by $$l$$ mm when a load W is hanged from it. If the wire goes over a pulley and two weights W each are hung at the two ends, the elongation of the wire will be (In mm) -
    Solution

    $$\begin{array}{l}\text { Hence at equilibriun }\\\qquad \begin{array}{l}T=W \\\frac{W}{A}=Y\frac{l_{1}}{L} \\\Rightarrow l_{1}=\frac{W L}{A Y}\end{array}\end{array}$$

    $$\begin{array}{l}\text { At equilibnumu } T=W \text{ for each } \\\text { side of wire }\rightarrow\\\frac{W}{A}=Y \frac{l_{2}}{L}\\\Rightarrow l_{2}=\frac{W L}{A Y}\end{array}$$



    $$\text { hence elongation will be same }\Rightarrow\text { ans } \rightarrow(A)$$

  • Question 3
    1 / -0
    A metal wire of length $$2.5 m$$ and area of cross section $$1.5\times { 10 }^{ -6 }{ m }^{ -2 }$$, is stretched through $$2 mm$$. Calculate the work done during stretching. $$Y=1.2\times { 10 }^{ 11 }N{ m }^{ -2 }$$
    Solution

  • Question 4
    1 / -0
    A brass wire of diameter $$1 mm$$ and of length $$2 m$$ is stretched by applying a force of $$20 N$$. If the increase in length is $$0.51 mm$$. Then the Young's modulus of the wire is 
    Solution
    Given,
    $$F=20N,l=2m,d=1mm,\Delta l=0.51mm$$
    We know,

    $$Y=\dfrac{Fl}{A\Delta l}$$

    $$Y=\dfrac{20\times 2}{\pi 5^2 \times 10^{-8}\times 0.51\times 10^{-3}}$$

    $$Y=\dfrac{40}{25\pi\times 0.51}\times 10^11$$

    $$Y=0.9984\times 10^11=9.984\times 10^{10}$$

    Option $$\textbf D$$ is the correct answer
  • Question 5
    1 / -0
     A force of $$15 N$$ increases the length ofa by $$1 \mathrm { mm }$$. The additional force require increase the length by $$2.5 \mathrm { mm }$$ in N is 
    Solution

    We know,

    $$Y=\dfrac{FL}{A\Delta L}$$

    For a wire, A,L,Y are constant.

    $$\dfrac{F}{\Delta L}=$$constant

    Let extra Force needed be $$ F$$,

    $$\dfrac{15}{1}=\dfrac{F+15}{2.5}$$

    $$F+15=2.5\times 15$$

    $$F=1.5\times 15=22.5$$

    Option $$\textbf B$$ is the correct answer
  • Question 6
    1 / -0
    Ball A strikes with velocity u elastically with identical ball B at rest, inclined at an angle of with line joining the centers of two balls. What will be the speed of ball B after the collision: 
    Solution
    It is not possible for ball $$A$$ to collide with ball $$B$$ at an angle to the line joining their centers because it will always consider with the line joining their centers  
    $$\rightarrow $$ It will always collide along the line joining their centers. 
    As the collision is elastic the velocity of ball $$B$$ will be $$u$$.

  • Question 7
    1 / -0
    A material has poisson's ratio $$0.3$$. If a uniform rod of it suffers a longitudinal strain of $$25\times 10^{-3}$$, then the percentage increase in its volume is
    Solution
    $$\begin{aligned}\mu &=\frac{1}{2}-\frac{Y}{6 B}\\\Rightarrow& \frac{3}{10}=\frac{1}{2}-\frac{Y}{6 B}\\\Rightarrow & \frac{Y}{6 B}=\frac{1}{2}-\frac{3}{10}=\frac{1}{5} \\\Rightarrow & \frac{Y}{6 B}=\frac{1}{5}\\\Rightarrow & \frac{Y}{B}=\frac{6}{5}\end{aligned}$$

    $$\begin{aligned}\Rightarrow \frac{(\Delta V / V)}{(\Delta l / l)} &=\frac{6}{5} \\\Rightarrow \quad(\Delta v / v)&=\frac{25 \times 10^{-3} \times 6}{5}=30\times10^{-3}\\\Rightarrow \quad \frac{\Delta V}{V}\%&=30 \times 10^{-3} \times 100=3 \% \\A n s: &(C)\end{aligned}$$
  • Question 8
    1 / -0
    When a weight of $$10 \,kg$$ is suspended from a copper wire of length $$3 \,m$$ and diameter $$0.4 \,mm$$. Its length increases by $$2.4 \,cm$$. If the diameter of the wire is doubled, then the extension is its length will be :
    Solution
    Mass $$= 10 \,kg$$          $$D = 0.4 \,mm$$
    $$f = mxg = 100 N$$

    $$A = \pi r^2 = \dfrac{\pi \times (0.4 \times 10^{-3})^2}{4} = \dfrac{\pi D^2}{4}$$
    $$L = 3$$

    $$T = \dfrac{fL}{A\Delta L}$$

    $$Y = \dfrac{100 \times 3}{\dfrac{\pi \times (0.4 \times 10^{-3})^2}{4} \times \Delta L}$$

    $$\Delta L = \dfrac{300 \times 4}{\pi (0.4 \times 10^{-3})^2 \times 4}$$

    Now, $$Y$$ is same for the material.
    $$Y = \dfrac{F \times L'}{A' \times \Delta L'}$$

    $$\Delta L' = \dfrac{f \times \dfrac{L}{4}}{4 \times A \times Y}$$

    $$\Delta L' = \dfrac{\dfrac{100 \times 3}{4}}{4 \times 1.25 \times 10^{-7} \times 1 \times 10^{11}}$$

    $$\Delta L' = \dfrac{75}{4 \times 1.25 \times 10^4}$$

    $$\Delta L' = 1.5 \times 10^{-3}m$$
    $$\Delta L' = 1.5 \,cm$$
  • Question 9
    1 / -0
    The Young's modulus a rubber string 8 cm long and density 1.5 kg/ $$m^{3}$$ is $$5\times 10^{8}N/m^{2}$$, is suspended on the ceiling in a room. The increases in length due to its own weigth will be 
    Solution

    Given that,

    Length of rubber band,  $$l=8\,cm$$

    Density, $$d=1.5\,Kg/{{m}^{3}}$$

    Young’s modulus, $$Y=5\times {{10}^{8}}\,N/{{m}^{2}}$$

    The relation for increase in length and young’s modulus is as follows:

    $$ l=\dfrac{{{L}^{2}}dg}{2Y} $$

    $$ l=\dfrac{{{(8\times {{10}^{-2}})}^{2}}1.5\times 10}{2\times 5\times {{10}^{8}}} $$

    $$ l=\dfrac{64\times {{10}^{-4}}\times 1.5\times 10}{{{10}^{9}}} $$

    $$ l=96\times {{10}^{-12}} $$

    $$ l=9.6\times {{10}^{-11}}\,m $$

  • Question 10
    1 / -0
    Write Copper, Steel, Glass and Rubber in order of increasing coefficient of elasticity
    Solution
    D.
    rubber, glass, copper, steel
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now