Self Studies

Mechanical Properties of Solids Test - 68

Result Self Studies

Mechanical Properties of Solids Test - 68
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A metallic beam having Young's modulus YY is supported at the two ends. It is loaded at the centre. The depression of the centre is proportional to
    Solution
    Depression in the beam is given by δ=WL34Ybd3\delta=\dfrac{W{L}^{3}}{4Yb{d}^{3}}
    where WW is the weight,LL is length,bb is breadth, YY is young's modulus and dd is the depth and δ\delta is the depression in the beam.
    Here, it is clear that,
    Depression in the beam is inversely proportional to Young's modulus
    δ1Y\delta\propto \dfrac{1}{Y}
  • Question 2
    1 / -0
    If rigidity modulus is 2.6 times of youngs modulus then the value of poission's ratio is 
    Solution

    Young’s Modulus=2× Rigidity Modulus ×  (1+ poisson’s Ratio) Given ,  Young’s Modulus =2.6×Rigidity Modulus2.6=2×(1+σ)1.3=1+σσ=0.3 \begin{array}{l}\text{Young's Modulus}= 2 \times\text { Rigidity Modulus } \times \text {  (1+ poisson's Ratio)}\\\text { Given , } \text{ Young's Modulus }=2.6 \times \text {Rigidity Modulus}\\ 2.6 = 2 \times (1+ \sigma)\\ 1.3 = 1 + \sigma \\ \sigma =0.3 \end{array}
  • Question 3
    1 / -0
    A steel wire of mass 3.16 Kg is stretched to a tensile strain of 1 x103{ 10 }^{ -3 }. What is the elastic deformation energy if density p=7.9g/cc and Y=2x1011N/m210^{ 11 }N/m^{ 2 }
    Solution
     Given  mass =3.16 kg Strain (ΔLL)=1×103\begin{array}{l}\text { Given } \\\text { mass }=3.16 \mathrm{~kg} \\\text { Strain }\left(\frac{\Delta L}{L}\right)=1\times10^{-3}\end{array}
    ρ( density )=7.8 g/cc\rho(\text { density })=7.8 \mathrm{~g} /\mathrm{cc}
    Y( young modulus )=2×1011Y(\text { young modulus })=2\times 10^{11}
    f=7.9gramcm3=7.9×103 kg106 m3f=\frac{7.9 \mathrm{gram}}{\mathrm{cm}^{3}}=\frac{7.9\times 10^{-3}\mathrm{~kg}}{10^{-6}\mathrm{~m}^{3}}
    =7.9×103 kgm3=7.9 \times 10^{3} \mathrm{~kg}\mathrm{m}^{3}
     Now,  Energy stored =12×stress × strain × volume \begin{array}{l}\text { Now, } \\\text { Energy stored }=\frac{1}{2} \times \text {stress }\times \text { strain } \times \text { volume }\end{array}
    Y= stress  strain  Stress =Y strain \begin{array}{c}\therefore \quad Y=\frac{\text { stress }}{\text { strain }} \\\text { Stress }=Y\text { strain }\end{array}
    E=12×Y×(strain)2×(ρV)ρE=\frac{1}{2} \times Y\times(\operatorname{strain})^{2}\times\frac{(\rho V)}{\rho}
    ρV=m\therefore \rho V=m
    =1×2×1011×(1×103)2×3.162×7.9×10+3=\frac{1 \times 2 \times 10^{11} \times\left(1\times 10^{-3}\right)^{2}\times 3.16}{2 \times7.9\times 10^{+3}}
    =0.4×102E=40 J\begin{array}{l}=0.4 \times 10^{2} \\E=40 \mathrm{~J}\end{array}

  • Question 4
    1 / -0
    Which of the following substances has the highest value of the young's modulus?
    Solution
     we know,  young’s modulus = Stress  strain \begin{array}{l}\text { we know, } \\\text { young's modulus }=\frac{\text { Stress }}{\text { strain }}\end{array}
    Y=FLAΔLYα1ΔL\begin{array}{l}Y=\frac{F L}{A \Delta L} \\Y\alpha \frac{1}{\Delta L}\end{array}
     By observation, ΔL in case of steel is  smallest. So Y (young’s modulus) will be  highest for steel. \begin{array}{l}\text { By observation, }\Delta \mathrm{L} \text { in case of steel is }\\\text { smallest. So } Y \text { (young's modulus) will be } \\\text { highest for steel. }\end{array}
  • Question 5
    1 / -0
    A telephone wire between the two poles is 50 m long and 1 mm in radius.When it is stretched by a load of 65 kg,its length becomes 50.12 m.Calculate Young's modulus of elasticity.
    Solution
    y=FlAΔl=650×50π×106×0.12y=65×5π×12×104=8.44×104 \begin{array}{l} y=\frac{F l}{A \Delta l}=\frac{650 \times 50}{\pi \times 10^{-6} \times 0.12} \\ y=\frac{65 \times 5}{\pi \times 12} \times 10^{4}=8.44 \times 10^{4} \end{array}
  • Question 6
    1 / -0
    Two wires of equal length and cross-section area suspended as shown in figure. Their Young's modulus areY1Y_1 and Y2Y_2 respectively. The equivalent Young's modulus will be

    Solution
    We know that

    K=FlK = \dfrac{F}{ \triangle l} = YAl\dfrac{YA}{l}

    and,  Keq=k1+k2K_{eq}=k_1+k_2 

    \Rightarrow Yeq2Al\dfrac{Y_{eq}2A}{l} =Y1Al\dfrac{Y_1A}{l}Y2Al\dfrac{Y_2A}{l}

    \Rightarrow Yeq=Y1 + Y22Y_{eq} = \dfrac{Y_1  +  Y_2}{2}
  • Question 7
    1 / -0
    A thin ring of radius R is made up of a material of density ρ\rho and young's modulus Y. If the ring is rotated about its centre in its own plane with an angular velocity ω\omega then the small increase in radius (ΔR)(\Delta R) of the ring  is
    Solution
    Consider an element PQ of length dl. Let T be the tension and A the area of cross-section of the wire .
    Mass of element dm=volume×density=A(dl)×ρdm=volume \times density = A(dl) \times \rho
    The component of T, towards the centre provides the necessary centripetal force to portion PQ F=2Tsin(dθ2)=(dm)Rω2F= 2T sin \left( \dfrac{d \theta}{2} \right) = (dm) R \omega^2
    For small angles sin(dθ)2=dθ2=dl/R2\dfrac{sin(d \theta)}{2} = \dfrac{d \theta}{2} = \dfrac{dl/R}{2}
    or dθ=dRd \theta = \dfrac{d}{R}
    Substituting in Eq. (i), we have
    T timesdlR=A(dl)(ρRω2T \ times \dfrac{dl}{R} = A(dl)( \rho R \omega^2
    or T=Aρω2R2T= A \rho \omega^2 R^2
    Let ΔR\Delta R be the increase in radius.
    Longitudinal strain= Δll=Δ(2πR)2πR=ΔRR \dfrac{ \Delta l}{l} = \dfrac{ \Delta(2 \pi R)}{ 2 \pi R} = \dfrac{ \Delta R}{R}
    Now, Y=T/AΔR/RY= \dfrac{T/A}{ \Delta R/ R}
    ΔR=TRAY=Aρω2R2)RAY \Delta R = \dfrac{T R}{AY} = \dfrac{A \rho \omega^2 R^2 ) R}{ AY} or ΔR=ρω2R3Y \Delta R= \dfrac{ \rho \omega^2 R^3}{Y}

  • Question 8
    1 / -0
    The Young's modulus of a wire is numerically equal to the stress which will
    Solution
    Δll=1 \frac{\Delta l}{l}=1 lfinal=l+Δl=2ll_{f i n a l}=l+\Delta l=2 l Therefere. length of wire will be doubled.
  • Question 9
    1 / -0
    What happens when the applied load increases and upto breaking stress in the experiment to determine the Young's modulus of elasticity?
    Solution
     In searl’s experiment, when applied load  increases upto breaking stress. then, area  of wire goes on decreasing and length  will extend and finally break. \begin{array}{l}\text { In searl's experiment, when applied load } \\\text { increases upto breaking stress. then, area } \\\text { of wire goes on decreasing and length } \\\text { will extend and finally break. }\end{array}
    Hence option A is correct
  • Question 10
    1 / -0
    The SI unit of stress is same as the SI unit of 
    Solution
    The SISI unit of stress is same as the SISI unit of pressure 
    Stress =FA=Forceacceleration=\dfrac { F }{ A } =\dfrac { Force }{ acceleration }
    Similarly, Pressure =Forceacceleration=\dfrac { Force }{ acceleration } .
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now