Packing fraction is known as the fraction of volume occupied by the constituent particles in crystal structure.
GIVEN
Lattices of $$Na$$ is Body centred cubic $$BCC$$
Lattices of $$Al$$ is Face centred cubic $$FCC$$
SOLUTION
$$Packing\hspace{0.1cm}fraction$$ =$$\dfrac{N_{atom}\hspace{0.1cm}V_{atom}}{V_{unit\hspace{0.05cm}cell}}$$
Packing fraction of BCC ($$Na$$)
Number of atoms ($$N_{atom}$$) = $$2$$
Volume of atoms ($$V_{atom}$$) = $$\dfrac{4}{3}$$$$\pi$$$$r^{2}$$
Volume of unit cell ($$V_{unit\hspace{0.05cm}cell}$$) = $$($$$$\dfrac{4r}{\sqrt3}$$$$)^{3}$$
Particle fraction $$_{BCC}$$ =$$\dfrac{N_{atom}\hspace{0.1cm}V_{atom}}{V_{unit\hspace{0.05cm}cell}}$$
= $$\dfrac{2\times\dfrac{4}{3}\pi r^{2}}{(\dfrac{4r}{\sqrt3})^{3}}$$
= $$\dfrac{\pi \sqrt{3}}{8}$$
$$\mathbf Particle fraction $$$$_{BCC}$$$$\cong$$ $$\mathbf 0.6802$$
Packing fraction of FCC ($$Al$$)
Number of atoms ($$N_{atom}$$) = $$4$$
Volume of atoms ($$V_{atom}$$) = $$\dfrac{4}{3}$$$$\pi$$$$r^{30}$$
Volume of unit cell ($$V_{unit\hspace{0.05cm}cell}$$) = $$($$$$\dfrac{4r}{\sqrt2}$$$$)^{3}$$
Particle fraction $$_{FCC}$$ = $$\dfrac{4\times\dfrac{4}{3}\pi r^{3}}{(\dfrac{4r}{\sqrt2})^{3}}$$
=$$\dfrac{\pi \sqrt{2}}{12}$$
Particle fraction $$_{FCC}$$ = $$0.74$$
The particle fractions for $$Na$$ and $$Al$$ are $$0.68$$ and $$0.74$$.
The correct option : B