Self Studies

Solid State Test - 67

Result Self Studies

Solid State Test - 67
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The ratio of a number of rectangular planes and diagonal plane in a cubic unit cell is ____.
    Solution
    The ratio of rectangular plane and diagonal plane in cubic unit cell is $$3:6$$ i.e, $$1:2$$

    There are 3 planes that lie parallel to the side of the cube,that these are rectangular planes.while 6 planes goes through opposite edges.And also there are diagonal planes.

    And Hence, the ratio of rectangular plane and diagonal plane in cubic unit cell is $$3:6$$ i.e, $$1:2$$
  • Question 2
    1 / -0
    A CCP of $$n$$ spheres of radius $$r$$, $$n$$ spheres of radius $$0.414\, r$$ and $$2n$$ spheres of radius $$0.225\, r$$ are introduced in the octahedral and tetrahedral void respectively. Therefore packing of the lattice is:
    Solution
    $$ \begin{array}{l} \text { Given: - CCP or FCC packing radius=r } \\ \text { Zeffective }=\frac{1}{8} \times 8+\frac{1}{2} \times 6=4 \end{array} $$

    $$ \begin{array}{l} \text { Let radius of sphere of atom of Fcc be r } \\ \text { and side of } F c c \text { be a } \end{array} $$

    $$ \begin{aligned} \text { Then } &: a \sqrt{2}=4 \mathrm{~r} \\ & \Rightarrow a=2 \sqrt{2} \mathrm{r} \end{aligned} $$

    $$ \begin{array}{l} \because \text { There are n spheres, } 80 \text { total number of } \\ \text { unit cells = } \frac{n}{4} \\ \text { volume of Lattice }=\frac{n}{4} \times(a)^{3}=\frac{n}{4}(2 \sqrt{2} r)^{3} \\ =4 \sqrt{2} n r^{3} \end{array} $$

    $$ \begin{aligned} \text { volume of atoms }=& n \times \frac{4}{3} \times \pi r^{3}+n \times \frac{4}{3} \times \pi \times(0.414 \mathrm{~r})^{9} \\ +2 n \times \frac{4}{3} \times \pi(0.225 \mathrm{})^{3} \\ =& \frac{n \times 4}{3} \times r^{3} \times \pi\left[1+(0.414)^{3}+(0.225)^{9}\right] \\ =& 4.534 \mathrm{nr}^{3} \end{aligned} $$

    $$ \begin{array}{l} \therefore \text { packing of lattice }=\dfrac{4.534 \mathrm{nr}^{9}}{4 \sqrt{2} \mathrm{nr}^3}=0.81 \\ \text { So, option (B) is correct. } \end{array} $$
  • Question 3
    1 / -0
    Molybdenum (At. wt. $$= 96 \ g/mol$$) crystallizes as $$bcc$$ crystal. If density of crystal is $$10.3 \ g/cm^3$$, then radius of $$Mo$$ atom is: [Use : $$\,N_A = 6 \times 10^{23}$$]
    Solution
    Since, Molybladenum crystallizes as $$bcc$$ rystal. So, $$N = 2$$.
    Expression for density is:

    $$\rho \quad =\quad \dfrac { N\times M }{ { N }_{ A }\times { a }^{ 3 } } $$

    $$ { a }^{ 3 }\quad =\quad \dfrac { N\times M }{ { N }_{ A }\times \rho  } $$

    $$ { a }^{ 3 }\quad =\quad \dfrac { 2\times 96 }{ 6\times { 10 }^{ 23 }\times 10.3 } $$

    $$ { a }^{ 3 }\quad =\quad 3.1\times { 10 }^{ -23 }\quad { cm }^{ 3 }$$ 

    $$a\quad =\quad 3.14\times { 10 }^{ -8 }\ cm\quad =\quad 314\quad pm$$.

    For, $$bcc$$ crystal,

    $$4r\quad =\quad \sqrt { 3 } a$$

    $$ r\quad =\quad \dfrac { \sqrt { 3 }  }{ 4 } a$$

    $$ r\quad =\quad \dfrac { \sqrt { 3 }  }{ 4 } \times 314$$ 

    $$r\quad =\quad 136\quad pm$$.
  • Question 4
    1 / -0
    The unit cell with the structure above refer to which crystal system?

    Solution
    For orthorhombic crystal structure all three sides are not equal i.e. $$a\neq b\neq c$$ and $$\alpha=\beta=\gamma=90^o$$
    Therefore, it is an orthorhombic crystal system.

    Option $$B$$ is correct.
  • Question 5
    1 / -0
    Arrange the following in decreasing order of melting point: $$NaCl,SiO_{2},Dry    Ice, Ice$$ 
  • Question 6
    1 / -0
    The number of parameters that defines a unit cell is 
  • Question 7
    1 / -0
    Match the column 1 correctly with the column 2 given below

    Solution

  • Question 8
    1 / -0
    The incorrect statement among the following is:
  • Question 9
    1 / -0
    $$AB$$ has $$NaCl$$ structure while $$XB$$ has $$CsCl$$ structure if $${ r }_{ A }|{ r }_{ B }=\ 5$$ and $${ r }_{ X }|{ r }_{ B }= 0.75$$ then what is the ratio of edge length of unit cell of $$AB$$ and $$XB$$.
    Solution
    $$AB\dfrac{r_{A}}{r_{B}}=0.5=\dfrac{1}{2}$$
    $$XB\dfrac{r_{X}}{r_{B}}=0.75=\dfrac{1.5}{2}$$
    $$r_{B=2}$$       $$r_{X=1.5}$$         $$r_{A=1}$$
    $$XB$$ form $$C_{5}Cl$$ structure $$50\ B^{-}$$
    takes $$CCP$$ porition
    $$4r=\sqrt{2}a$$
    $$a=\dfrac{4r_{B}}{\sqrt{2}}=\dfrac{4\times 2}{\sqrt{2}}=\dfrac{8}{\sqrt{2}}$$
    As form $$NaCl$$ structure $$50\ B^{-}$$ takes simple cable structure 
    $$a=2r_{B}=2_{X2}=4$$
    eape length of $$A-B$$: edge length of $$XB$$
    $$\dfrac{8}{\sqrt{2}}:4=1.4$$
  • Question 10
    1 / -0
    The ratio of the volume of tetragonal lattice to that of a hexagonal lattice is?
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now