Given that:
Mass of liquid \(A=100~g\)
Molar mass of liquid \(A=140~g~mol^{-1}\)
Mass of liquid \(B=1000~g\)
Molar mass of liquid \(B=180~g~mol^{-1}\)
Number of moles of liquid \({A}\),
\(n_{A}=\frac{100}{140}\)
\(=0.714 {~mol}\)
Number of moles of liquid \({B}\),
\(n_{B}=\frac{1000}{180}\)
\(=5.556 {~mol}\)
Then, mole fraction of \({A}\),
\(x_{A}=\frac{n_{A}}{n_{A}+n_{B}}\)
\(=\frac{0.714}{0.714+5.556}\)
\(=\frac{0.714}{0.714+5.556}\)
\(=0.114\)
And, mole fraction of \({B}\),
\({x}_{{B}}=1-0.114\)
\(=0.886\)
Vapour pressure of pure liquid \({B}\),
\(p_{B}^{\circ}=500\) torr
Therefore, vapour pressure of liquid \(B\) in the solution,
\(p_{B}=p_{B}^{\circ} x_{B}\)
\(=500 \times 0.886\)
\(=443\) torr
Total vapour pressure of the solution,
\(p_{\text {total }}=475\) torr
Therefore, Vapour pressure of liquid A in the solution,
\(p_{A}=p_{\text {total }}-p_{B}\)
\(=475-443\)
\(=32\) torr
Now,
\(p_{A}=p_{A}^{\circ} x_{A}\)
Or, \( p_{A}^{\circ}=\frac{p_{A}}{x_{A}}\)
\(=\frac{32}{0.114}\)
\(=280.7\) torr
Hence, the correct option is (D).