Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 28

Result Self Studies

Relations and Functions Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Let f: R → R be defined by f(x) = \(3x ^2\) - 5 and g: R → R by g(x) = \(x\over x^2+1\). Then gof is

    Solution

    Given that

    f(x) = \(3x^2-5\) and g(x) = \(x\over x^2+1\)

    gof = g{f(x)} = g(\(3x^2-5\))

    \(3x^2-5\over (3x^2-5)^2+1\) = \(3x^2-5\over 9x^4-30x^2+25+1\)

    \(3x^2-5\over 9x^4-30x^2+26\)

  • Question 2
    1 / -0

    Which of the following functions from Z into Z are bijections?

    Solution

    Here,

    f(x) = x + 2 ⇒ f(\(x_1\)) = f(\(x_2\))

    \(x_1\) + 2 = \(x_2\) + 2 ⇒ \(x_1\) = \(x_2\)

    Let y = x + 2

    x = y - 2 

    f(y-2) = x+2 

    =(y-2)+2

    =y

    \(\implies f(x)=y\)

    Hence, f(x) is one-one and onto.

  • Question 3
    1 / -0

    Let f: R → R be the functions defined by f(x) = \(x ^3\) + 5. Then \(f ^{-1}\)(x) is

    Solution

    Given that, f(x) = \(x^3\) + 5

    Let y = \(x^3\) + 5 ⇒ \(x^3\) = y - 5

    x = \((y-5)^{1\over3}\) ⇒ \(f^{-1}(x)=\,(x-5)^{\frac{1}{3}}\) 

  • Question 4
    1 / -0

    Let f: A → B and g: B → C be the bijective functions. Then \((gof) ^{-1}\) is

    Solution

    Given that,

    f: A → B and g: B → C be the bijective functions.

    \((gof)^{-1}\) = \(f^{-1}og^{-1}\)

  • Question 5
    1 / -0

    Let f: R -\(\Big\{{3\over5}\Big\}\) → R be defined by f(x) = \(3x+2\over 5x-3\). Then

    Solution

    Given that,

    f(x) = \(3x+2\over 5x-3\)

    Let y = \(3x+2\over 5x-3\)

    3x + 2 = 5xy - 3y 

    ⇒ x(3 - 5y) = -3y - 2

    x = \(3y+2\over 5y-3\) ⇒ \(f^{-1}\)(x) = \(3x+2\over 5x-3\)

    Therefore, \(f^{-1}(x) =f(x)\)

  • Question 6
    1 / -0

    Let f: [0, 1] → [0, 1] be defined by \(f(x) = \begin{cases} x, & \quad \text{if } x \text{ is rational}\\ 1-x, & \quad \text{if } x \text{ is irrational} \end{cases}\) Then (\(fof\)) x is

    Solution

    Given that

    f: [0, 1] → [0, 1] be defined by

    \(f(x) = \begin{cases} x, & \quad \text{if } x \text{ is rational}\\ 1-x, & \quad \text{if } x \text{ is irrational} \end{cases}\)

    \(\therefore\) (\(fof\))x = f(f(x)) = x

  • Question 7
    1 / -0

    Let f: [2, \(\infty\)) → R be the function defined by f(x) = \(x ^2 -4x + 5\), then the range of f is

    Solution

    Given that,

    f(x) = \(x ^2 -4x + 5\)

    Let y = \(x ^2 -4x + 5\)

    ⇒ y = \(x ^2 -4x + 4+1\) = \((x-2)^2\) + 1

    ⇒ \((x-2)^2\) = y - 1 ⇒ x - 2 = \(\sqrt{y-1}\)

    ⇒ x = 2 + \(\sqrt{y-1}\)

    \(\therefore\) y - 1 \(\geq\) 0, y \(\geq\) 1

    Range = \([1,\infty)\)

  • Question 8
    1 / -0

    Let f: N → R be the function defined by f(x) = \(2x-1\over 2\) and g: Q → R be another function defined by g(x) = x + 2. Then (gof)\((\frac{3}{2})\) is

    Solution

    Given that

    f(x) = \(2x-1\over 2\) and g(x) = x + 2

    \((gof)(\frac{3}{2})\) = \(g\Big[f\Big({3\over2}\Big)\Big]\) = g\(\Bigg({2\times{3\over2}-1\over2}+2\Bigg)\)

    = g(1) = 1 + 2 = 3

  • Question 9
    1 / -0

    Let f: R → R be defined by \(f(x) = \begin{cases} 2x :x>3 & \quad \\ x^2:1 < x \leq 3 & \quad \\3x : x \leq 1 \end{cases}\) Then f(-1) + f(2) + f(4) is

    Solution

    Given that

    \(f(x) = \begin{cases} 2x :x>3 & \quad \\ x^2:1 < x \leq 3 & \quad \\3x : x \leq 1 \end{cases}\)

    f(-1) + f(2) + f(4)

    = 3(-1) + \((2)^2\) + 2 x 4

    = -3 + 4 + 8 = 9

  • Question 10
    1 / -0

    Let f: R → R be given by f(x) = tan x. Then \(f ^{-1}\) (1) is

    Solution

    Given that,

    f(x) = tan x

    Let y = tan x ⇒ x = \(tan^{-1}\)y

    ⇒ \(f^{-1}\)(x) = \(tan^{-1}\)x ⇒ \(f^{-1}\)(1) = \(tan^{-1}\)1

    ⇒ \(tan^{-1}\)tan\(\pi\over4\) = \(\pi\over4\) [\(\because\) tan\(\pi\over4\) = 1]

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now