Self Studies
Selfstudy
Selfstudy

Relations and F...

TIME LEFT -
  • Question 1
    1 / -0

    If $$f:(-\infty ,\infty )\rightarrow (-\infty ,\infty )$$ is defined by $$f(x)=5x-6$$, then $$f^{-1}(x)=$$

  • Question 2
    1 / -0

    If $$f:R\rightarrow R $$ is defined by $$\displaystyle f(x)={\dfrac{2x+1}{3}}$$  then $$f^{-1}(x)=$$

  • Question 3
    1 / -0

    If $$f(x)=\dfrac{5x+6}{7x+9}$$ then $$f^{-1}(x)=$$

  • Question 4
    1 / -0

    If $$f$$ from $$R$$ into $$R$$ is defined by $$f(x)=x^{3}-1$$, then $$f^{-1}\left \{ -2,0,7 \right \}=$$

  • Question 5
    1 / -0

    If $$f(x)=e^{5x+13}$$  then $$f^{-1}(x)=$$

  • Question 6
    1 / -0

    If $$f(x)=3x-1$$ and $$g(x)=5x+6$$ then $$(g^{-1}of^{-1})(2)=$$

  • Question 7
    1 / -0

    If $$f:[1,\infty )\rightarrow [2,\infty) $$ is given by $$f(x)=x+\dfrac{1}{x}$$, then $$f^{-1}(x)=$$

  • Question 8
    1 / -0

    The function $$f:(0,\infty )\rightarrow (-\infty ,\infty )$$ is defined by $$ f(x)=\log_{3} x $$ then $$ f^{-1}(x)=$$

  • Question 9
    1 / -0

    If $$f:\left \{ 1,2,3,..... \right \}\rightarrow \left \{ 0,\pm 1,\pm 2,..... \right \}$$ is defined by  $$f(n)=\begin{cases} \dfrac{n}{2} & \text{ if } n  \space is \space even \\-\left (\dfrac{n-1}{2} \right ) & \text{ if } n \space is \space  odd \end{cases}$$ then  $$f^{-1}(-100)$$ is

  • Question 10
    1 / -0

    $$f:R\rightarrow R$$ is defined by $$f(x)=x^{2}+4$$ then $$f^{-1}(13)=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now