Self Studies
Selfstudy
Selfstudy

Relations and F...

TIME LEFT -
  • Question 1
    1 / -0

    Assertion(A):  If $$X=\left \{ x:-1\leq x\leq 1 \right \}$$  and  $$f:X\rightarrow X$$ defined by $$f(x)=\sin \pi x; \forall x\in A$$ is not invertible function

    Reason (R): For a function $$f$$ to have inverse, it should be a bijection

  • Question 2
    1 / -0

    Let $$S$$ be set of all rational numbers. The functions $$f:R\rightarrow R,\ g:R\rightarrow R$$ are defined as 
    $$f(x)=\begin{cases}
    0, & x \in S \\ 
    1, & x \notin S
    \end{cases}$$
    $$g(x)=\begin{cases}
    -1 & x\in S \\ 
     0 & x\notin S
    \end{cases}$$
    then, $$(fog) (\pi)+(gof)(e)=$$

  • Question 3
    1 / -0

    If $$n\geq 1$$ is any integer, $$\mathrm{d}(n)$$ denotes the number of positive factors of $$n$$, then for any prime number $$\mathrm{p},\ \mathrm{d}(\mathrm{d}(\mathrm{d}(\mathrm{p}^{7})))=$$

  • Question 4
    1 / -0

    Let $$\displaystyle f\left( x \right)={ x }^{ 2 }-x+1,x\ge \left( \frac { 1 }{ 2 }  \right) $$ then the solution of the equation $$f(x)=f^{-1}(x)$$ is

  • Question 5
    1 / -0

    lf $$f:[-6,6]\rightarrow \mathbb{R}$$ is defined by $$f(x)=x^{2}-3$$ for $$x\in \mathbb{R}$$ then
    $$(fofof)(-1)+(fofof)(0)+(fofof)(1)=$$

  • Question 6
    1 / -0

    lf $$f$$ : $$R\rightarrow R$$ is defined by
    $$f(x)=\left\{\begin{array}{l}x+4 & x<-4\\3x+2 & -4\leq x<4\\x-4 & x\geq 4\end{array}\right.$$
    then the correct matching of list I to List II is. 

    List - IList - II
    $$\mathrm{A}) f(-5)+f(-4)=$$$$\mathrm{i}) 14$$
    $$\mathrm{B}) f(|f(-8)|)=$$ii $$) 4$$
    $$\mathrm{C}) f(f(-7)+f(3))=$$$$\mathrm{i}\mathrm{i}\mathrm{i})-11$$
    $$\mathrm{D}) f(f(f(f(0)))+1=$$$$\mathrm{i}\mathrm{v})-1$$
    v) $$1$$
    vi) $$0$$

  • Question 7
    1 / -0

    If $$f:R\rightarrow R$$ is defined by $$f(x)=x^{2}-10x+21 $$ then $$ f^{-1}(-3)$$ is

  • Question 8
    1 / -0


    lf $$g(f(x)) =|\sin \mathrm{x}|,f(g(x)) =(\sin\sqrt{\mathrm{x}})^{2}$$, then

  • Question 9
    1 / -0


    lf $$ f(x)=x-x^{2}+x^{3}-x^{4}+\ldots..\infty$$ when $$|x|<1$$, then the ascending order of the following is
    a) $$f(1/2)$$
    b) $$f^{-1}(1/2)$$
    c) $$ f(-1/2)$$
    d) $$f^{-1}(-1/2)$$

  • Question 10
    1 / -0

    Let $$f$$ be an injective function with domain $$\{x, y, z\}$$and range $$\{1,2,3\}$$ such that exactly one of the follwowing statements is correct and the remaining are false :

    $${f}({x})=1,{f}({y})\neq 1$$,
    $${f}({z})\neq 2$$, 
    then the value of $${f}^{-1}(1)$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now