Self Studies

Relations and Functions Test - 43

Result Self Studies

Relations and Functions Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$\displaystyle f:(-\infty,1]\rightarrow (-\infty,1]$$ such that $$\displaystyle f(x)=x(2-x).$$ Then $$f^{-1}(x)$$ is
    Solution
    We have, $$f(x)=x(2-x)$$

    $$y=x(2-x)$$

    $$-y=x(x-2)$$

    $$-y=x^{2}-2x$$

    $$1-y=x^{2}-2x+1$$

    $$1-y=(x-1)^{2}$$

    $$\pm\sqrt{1-y}=x-1$$

    Now $$f:(-\infty,1] \rightarrow (-\infty,1]$$

    $$x-1=-\sqrt{1-y}$$

    $$x=1-\sqrt{1-y}$$

    Hence $$f^{-1}(x)=1-\sqrt{1-x}$$
  • Question 2
    1 / -0
    If $$\displaystyle f(x)=\frac{1}{1-x},x\neq 0,1$$ then the graph of the function $$\displaystyle y=f\left \{ f(f(x)) \right \},x> 1,$$ is
    Solution
    $$f(f(x))=\dfrac{1}{1-\dfrac{1}{1-x}}$$

    $$=-\dfrac{1-x}{x} =g(x)$$

    $$f(g(x))=\dfrac{1}{1+\dfrac{1-x}{x}}$$

    $$=\dfrac{x}{x+1-x}$$

    $$=x$$

    $$y=x$$ is an equation of straight line.

    Hence, 'C' is correct.
  • Question 3
    1 / -0
    Let $$\displaystyle f:\left \{ x,y,z \right \}\rightarrow \left \{ a,b,c \right \}$$ be a one-one function and only one of the conditions $$(i)f(x)\neq b, (ii)f(y)=b,(iii)f(z)\neq a$$ is true then the function $$f$$  is given by the set 
    Solution
    $$f:\left\{ x,y,z \right\} \rightarrow \left\{ a,b,c \right\} $$  is  a  one-one  function 

    $$ \Rightarrow$$   each  element  in $$ \left\{ x,y,z \right\} $$  will  have  exactly  one  image  in  $$\left\{ a,b,c \right\}$$

    and  no  two  elements  of $$ \left\{ x,y,z \right\}$$   will  have  same  image  in  $$\left\{ a,b,c \right\} $$

     Coming to the given  3  conditions, only one is true.

     1)  if  $$f\left( x \right) \neq b$$  is  true  then  $$f\left( y \right) =b$$  is  false  which  makes  $$f\left( z \right) \neq a$$  true  $$\Longrightarrow   f\left( x \right) \neq b$$  is  false.

     2)  if  $$f\left( y \right) =b$$  is  true  then  $$f\left( x \right) \neq b$$  will  also  be  true  $$\Longrightarrow   f\left( y \right) =b$$  is  false

    $$ \therefore   f\left( z \right) \neq a$$  is  the  true  condition  and  remainig two  are  false  conditions.

    $$\therefore   f\left( x \right) =b,  f\left( y \right) =a,  f\left( z \right) =c$$

     hence  $$f=\left\{ \left( x,b \right) ,\left( y,a \right) ,\left( z,c \right)  \right\} $$
  • Question 4
    1 / -0
    If $$\displaystyle f(x)=3x-5$$ then $$f^{-1}(x)=$$
    Solution
    $$f(x)=3x-5$$

    Since $$f(x)$$ is a purely linear function (straight line), it is therefore a one-one function.

    Hence $$f(x)$$ is revertible for all real $$x.$$

    $$y=3x-5$$

    $$y+5=3x$$

    $$x=\dfrac{y+5}{3}$$

    Replacing $$x$$ by $$y$$, gives us 

    $$f^{-1}(x)=\dfrac{x+5}{3}$$
  • Question 5
    1 / -0
    Which of the following function is one-one?
    Solution
    Option A - Consider $$x = 2 $$ and $$ x =0 $$ , the value of $$f(x)$$ is same. Hence it is not one-one
    Option B -  If we replace $$x$$ by $$-x$$, then the value of $$g(x)$$ remains the same. Hence it is not one-one
    Option C - $$h(x)$$ is an increasing function for the given values of $$x$$. Hence it is one-one function
    Option D -$$f(x)$$ is an even function. So it is not one-one for the given values of $$x$$

  • Question 6
    1 / -0
    If $$\displaystyle f(x)=x^{n},n\in N$$ and $$(gof)(x)=ng(x)$$ then $$g(x)$$ can be 
    Solution
    $$f(x)=x^{n}$$

    $$g(f(x))=ng(x)$$ ...$$(i)$$

    $$\log(f(x))=n\log(x)$$ ...$$(ii)$$

    Taking $$\log(|x|)$$ as $$g(x)$$ the above expression is reduced to eq $$i$$.

    Hence

    $$g(x)=\log(|x|)$$.
  • Question 7
    1 / -0
    If $$f:R^+\rightarrow A$$, Where $$A=\{x:-5<x<\infty\}$$ be defined by $$f(x)=x^2-5$$. Then $$f^{-1}(7)=$$
    Solution
    The value $$f^{-1}(7)$$ will be the roots of the equation 

    $$x^2-5= 7\Rightarrow x^2 = 12\Rightarrow x = \pm 2\sqrt{3}$$

    But only positive. $$\therefore  x =  2\sqrt{3}$$
  • Question 8
    1 / -0
    If the function $$f:[1,\infty)\rightarrow [1,\infty)$$ is defined by $$\displaystyle f(x)=3^{x(x-1)}$$ then $$f^{-1}(x) $$ is 
    Solution
    For the given domain, the function is one one.
    Thus,
    $$f(x)=2^{x(x-1)}$$

    $$y=2^{x^{2}-x}$$

    $$lny=(x^{2}-x)ln2$$

    $$log_{2}y=x^{2}-x$$

    $$log_{2}y=(x-\dfrac{1}{2})^{2}-\dfrac{1}{4}$$

    $$log_{2}y+\dfrac{1}{4}=(x-\dfrac{1}{2})^{2}$$

    $$\dfrac{\pm 1}{2}(\sqrt{1+4log_{2}y})=x-\dfrac{1}{2}$$

    Since $$f:[1,\infty)\rightarrow[1,\infty)$$
    Thus domain is $$[1,\infty)$$
    Hence domain is positive so negative sign will be ignored.   $$So$$

    $$x-\dfrac{1}{2}=\dfrac{1}{2}(\sqrt{1+4log_{2}y})$$

    $$x=\dfrac{1}{2}[1+\sqrt{1+4log_{2}y}]$$
    Replacing x and y, gives us 

    $$f^{-1}(x)=\dfrac{1}{2}[1+\sqrt{1+4log_{2}x}]$$

  • Question 9
    1 / -0
    The composite mapping $$fog$$ of the map $$f: R\rightarrow R,f(x)=\sin x$$ and $$g: R\rightarrow R, g(x)=x^2$$ is
    Solution
    Composite mapping will be $$f(g(x))$$

    $$=f(x^2)$$

    $$=\sin(x^2)$$

    Hence option $$'C'$$ is the answer.
  • Question 10
    1 / -0
    If the function $$f:R\rightarrow R$$ be such that $$\displaystyle f(x)=x-[x],$$ where $$[y]$$ denotes the greatest integer less than or equal to $$y$$, then $$f^{-1}(x)$$ is
    Solution
    $$f\left( x \right) = x - \left[ x \right] = \left\{ x \right\}$$ is not one-one function from R to R. Hence $${f^{ - 1}}\left( x \right)$$ can not be defined.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now