Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 44

Result Self Studies

Relations and Functions Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle f:\left ( 3,4 \right )\rightarrow \left ( 0,1 \right )$$ is defined by $$\displaystyle f\left ( x \right )=x-\left [ x \right ]$$ where $$\displaystyle [x] $$denotes the greatest integer function then $$ f^{-1}(x)$$ is
    Solution
    Note that $$\displaystyle f\left ( x \right )=x-\left [ x \right ] =\left\{ x \right\}$$. Hence every number $$x \in \left( {3,4} \right)$$ is mapped to its fractional part.
    Hence, the inverse of the function can be written by adding the integer part of the number i.e., $$3$$ to each of the fraction part.
    Hence the function $${f^{ - 1}}\left( x \right) = x + 3$$.
  • Question 2
    1 / -0
    Let $$\displaystyle f(x)=\frac{ax}{x+1}$$, where $$\displaystyle x\neq -1$$. Then for what value of $$\displaystyle a$$ is $$\displaystyle f( f(x))=x$$ always true
    Solution
    $$\displaystyle f\left( {f\left( x \right)} \right) = \dfrac{{a\dfrac{{ax}}{{x + 1}}}}{{\dfrac{{ax}}{{x + 1}} + 1}} = \dfrac{{\dfrac{{{a^2}x}}{{x + 1}}}}{{\dfrac{{ax + x + 1}}{{x + 1}}}} = \dfrac{{{a^2}x}}{{ax + x + 1}}$$

    Since, $$\displaystyle f\left( {f\left( x \right)} \right) =x$$, we have,

    $$\displaystyle\dfrac{{{a^2}x}}{{ax + x + 1}}=x$$.

    Simplifying the equation we get,

    $${a^2}x = \left( {a + 1} \right){x^2} + x$$

    $$\therefore \left( {a + 1} \right){x^2} + \left( {1 - {a^2}} \right)x = 0$$

    or $$\left( {a + 1} \right)x\left( {x + 1 - a} \right) = 0$$

    Hence the only possible value is $$a=-1$$
  • Question 3
    1 / -0
    Let $$ f:R \rightarrow R$$ and $$g:R \rightarrow R$$ be defined by $$f(x)=x^2+2x-3,g(x)=3x-4$$ then $$(gof) (x)=$$
    Solution
    Given that, $$f(x)=x^2+2x-3$$ and $$g(x)=3x-4$$

    $$(gof) (x)=g\left(f(x)\right)$$

                    $$=3(x^2+2x-3)-4$$

    $$(gof) (x)=3x^2+6x-13$$

    Hence, option A.
  • Question 4
    1 / -0
    If $$f(x)=ax+b$$ and $$g(x)=cx+d$$, then $$f(g(x))=g(f(x))$$ implies
    Solution
    $$f(g(x))=a(cx+d)+b$$

    $$=acx+ad+b$$...(i)

    $$g(f(x))=c(ax+b)+d$$

    $$=ac(x)+bc+d$$ ...(ii)

    $$f(g(x))=g(f(x))$$

    From (i) and (ii)

    $$ac(x)+bc+d=acx+ad+b$$

    $$cb+d=ad+b$$

    $$g(b)=f(d)$$
  • Question 5
    1 / -0
    If $$f$$ and $$g$$ are two functions such that  $$\displaystyle \left ( fg \right )\left ( x \right )=\left ( gf \right )\left ( x \right )$$ for all $$x$$. Then $$f $$ and $$g$$ may be defined as
    Solution
    A$$)f(x)=$$$$\sqrt{x},g(x)=cosx then (fg)(x) = \sqrt{\cos x} and  (gf)(x) = \cos \sqrt{x}$$.They are not equal.

    B)$$f(x)=x^{3},g(x)=x+1 then (fg)(x) = (x+1)^{3} and (gf)(x)= x^{3}+1$$.They are not equal.

    C)$$f(x)=x1,g(x)=x^{2}+1 then  (fg)(x)=x^{2} and (gf)(x)=x^{2}-2x$$. They are not equal.

    D)$$f(x)=x^{m}, g(x)=x^{n} then (fg)(x)=x^{n+m} and (gf)(x)=x^{n+m}$$.Hence $$(fg)(x)= (gf)(x)$$
  • Question 6
    1 / -0
    If $$f:R\rightarrow R$$ such that $$f(x)=log_3 x$$ then $$f^{-1} x$$ is equal to
    Solution
    $$f(x)$$ is invertible for all positive $$x$$.

    $$y=log_{3}(x)$$

    Taking antilogarithm on both sides, we get

    $$3^{y}=x$$.

    Hence,

    $$f^{-1}(x)=3^{x}$$

    Hence, option 'B' is correct.
  • Question 7
    1 / -0
    If $$f:\left( 3,6 \right) \rightarrow \left( 1,3 \right) $$ is a function defined by $$\displaystyle f\left( x \right)=x-\left[ \frac { x }{ 3 }  \right] $$ $$($$ where $$\left[ . \right] $$ denotes the greatest integer function $$),$$ then $$\displaystyle f^{ -1 }\left( x \right)=$$
    Solution
    Given that $$\displaystyle f\left( x \right) =x-\left[ \frac { x }{ 3 }  \right] $$

    where $$\displaystyle f:\left( 3,6 \right) \rightarrow \left( 1,3 \right) $$

    Now, inside the given domain, we will always have $$\displaystyle \left[ \frac { x }{ 3 }  \right] =1$$

    $$\displaystyle \therefore f\left( x \right) =x-1$$ throughout its domain 

    $$\displaystyle \Rightarrow y=x-1$$

    $$\displaystyle \Rightarrow x=y+1={ f }^{ -1 }\left( y \right) $$

    $$\displaystyle \therefore { f }^{ -1 }\left( x \right) =x+1$$ 
  • Question 8
    1 / -0
    Let $$S$$ be a set containing $$n$$ elements. Then the total number of binary operations on $$S$$ is
    Solution
    No of binary operations imply
    $$S\times S\rightarrow S$$
    $$=n(S)^{[n(S\times S)]}$$
    $$=n^{n\times n}$$
    $$=n^{n^2}$$
  • Question 9
    1 / -0
    Let $$f: R\rightarrow R$$ be defined by $$f(x)=3x-4$$ then $$f^{-1}(x)$$ is
    Solution
    $$f(x)$$ is invertible for all real values of $$x$$
    Hence
    $$y=3x-4$$
    $$y+4=3x$$
    $$\dfrac{y+4}{3}=x$$
    $$f^{-1}(x)=\dfrac{x+4}{3}$$
  • Question 10
    1 / -0
    A function $$y=f\left ( x \right )$$ is invertible only when
    Solution
    Invertible function is defined as, the function $$f$$ applied to an input $$x$$ gives a result of $$y$$, then applying its inverse function $$g$$ to $$y$$ gives the result $$x$$, and vice versa. i.e., $$f\left ( x \right )=y$$ $$\Rightarrow  g\left ( y \right )$$ = $$x$$.
    And bijective function has the same definition as that of an Invertible function
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now