Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 45

Result Self Studies

Relations and Functions Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle f:[1,+\infty ]\rightarrow [2,+\infty )$$ is given by $$f(x)=x+\dfrac{1}{x}$$  then $$f^{-1}(x)$$ equals
    Solution
    Let $$y = x+\cfrac{1}{x}$$
    $$\Rightarrow x^2-yx+1=0\Rightarrow x = \cfrac{y+\sqrt{y^2-4}}{2}=f^{-1}(y)$$
    Hence $$f^{-1}(x) = \cfrac{x+\sqrt{x^2-4}}{2}$$
    Note: -ve term in step two is discarded using given domain and co-domain.
  • Question 2
    1 / -0
    If $$f : \{1,2,3,...\} \rightarrow \{0, \pm 1, \pm 2,...\}$$ is defined by
    $$\displaystyle y=f(x)=\begin{cases} \displaystyle \frac { x }{ 2 } \quad \quad \text{ if x is even } \\ -\displaystyle \frac { (x-1) }{ 2 } \quad ,\text{ if x is odd } \end{cases}$$, then $$f^{-1}(100)$$ is
    Solution
    Since $$100$$ is even $$f^{-1}(x)=2x$$

    Hence $$f^{-1}(100)=200$$
  • Question 3
    1 / -0
    If $$\displaystyle f(y)=\frac{y}{\sqrt{1-y^2}}$$; $$\displaystyle g(y)=\frac{y}{\sqrt{1+y^2}}$$ then $$(fog)y$$ is equal to
    Solution
    Given $$\displaystyle f(y)=\frac{y}{\sqrt{1-y^2}}$$  and  $$\displaystyle g(y)=\frac{y}{\sqrt{1+y^2}}$$
    $$\therefore \displaystyle (fog)y = f(g(y))=\dfrac{\dfrac{y}{\sqrt{1+y^2}}}{\sqrt{1-\dfrac{y^2}{1+y^2}}}=y$$
  • Question 4
    1 / -0
    $$f:R\rightarrow R$$ is a function defined by $$f(x)=10x-7$$. If $$g=f^{-1}$$, then $$g(x)$$ is equals 
    Solution
    $$y=10x-7$$

    It is a one one function over the given domain.

    $$y+7=10(x)$$

    $$x=\dfrac{y+7}{10}$$

    Hence

    $$f^{-1}$$ will be $$g(x)$$

    $$g(x)=\dfrac{x+7}{10}$$

    Hence, option 'C' is correct.
  • Question 5
    1 / -0
    Let $$f:[4,\infty )\rightarrow [4,\infty )$$ be a function defined by $$f\left( x \right)={ 5 }^{ x\left( x-4 \right)  }$$, then $$f^{ -1 }\left( x \right)$$ is
    Solution
    Let $$y={ 5 }^{ x\left( x-4 \right)  }\Rightarrow x\left( x-4 \right) =\log _{ 5 }{ y } \Rightarrow { x }^{ 2 }-4x-\log _{ 5 }{ y } =0$$

    $$\displaystyle \Rightarrow x=\frac { 4\pm \sqrt { 16+4\log _{ 5 }{ y }  }  }{ 2 } =\left( 2\pm \sqrt { 4+\log _{ 5 }{ y }  }  \right) $$

    But $$x\ge 4$$, so $$x=\left( 2+\sqrt { 4+\log _{ 5 }{ y }  }  \right) $$

    $$\therefore f^{ -1 }\left( y \right) =2+\sqrt { 4+\log _{ 5 }{ y }  } $$

    $$\therefore f^{ -1 }\left( x \right) =2+\sqrt { 4+\log _{ 5 }{ x }  } $$
  • Question 6
    1 / -0
    The inverse of $$\displaystyle f\left ( x \right )=\frac{e^{3x}-e^{-3x}}{e^{3x}+e^{-3x}}$$ is
    Solution
    $$\displaystyle y=\frac{e^{3x}-e^{-3x}}{e^{3x}+e^{-3x}}$$

    $$\Rightarrow \displaystyle y=\frac{e^{6x}-1}{e^{6x}+1}$$

    $$\Rightarrow \displaystyle \frac{y+1}{y-1}=\frac{e^{6x}-1+e^{6x}+1}{e^{6x}-1-e^{6x}-1}$$

    $$\Rightarrow \displaystyle \frac{y+1}{y-1}=\frac{2e^{6x}}{-2}$$

    $$\Rightarrow \displaystyle \frac{1+y}{1-y}=e^{6x}$$

    Taking $$\log_e$$ we get $$\displaystyle \log_{e}\left(\frac{1+y}{1-y}\right)=6x$$

    $$\displaystyle x=\frac{1}{6}\left(\log_{e}\left(\frac{1+y}{1-y}\right)\right)$$

    Hence $$f^{-1}$$$$\displaystyle =\frac{1}{6}\left(\log_{e}\left(\frac{1+x}{1-x}\right)\right)$$
  • Question 7
    1 / -0
    If $$\displaystyle f\left ( x \right )=\left\{\begin{matrix}
    x^{2}         x \geq 0\\
    x              x < 0
    \end{matrix}\right.$$
    then $$\displaystyle (f o f)(x)$$ is given by
    Solution
    For $$x\ge0$$,we have $$\displaystyle f \circ f\left( x \right)= {\left( {{x^2}} \right)^2}=\left( {{x^4}} \right)$$
    For $$x<0$$,we have $$\displaystyle f \circ f\left( x \right)=x$$
  • Question 8
    1 / -0
    Let $$\displaystyle g(x)=1+x-[x]$$ and $$\displaystyle f(x)=\left\{\begin{matrix}{-1}\quad {x< 0} \\ {0} \quad {x=0}\\{1} \quad {x> 0} \end{matrix}\right.$$ Then for all  $$\displaystyle x, f\left \{ g\left ( x \right ) \right \}$$ is equal to 
    Solution
    Let $$g(x) = 1+x-[x] = 1+\{x\}> 0$$ 

    since $$\{x\}\in [0,1) \forall x\in R$$

    Hence $$f\{g(x)\} = 1$$
  • Question 9
    1 / -0
    If $$\displaystyle f(x)= \frac{3x+2}{5x-3}$$ then
    Solution
    Let  $$y=\displaystyle \frac{3x+2}{5x-3}$$

    $$\Rightarrow \displaystyle x=\frac{3y+2}{5y-3}=f^{-1}(y)$$

    $$\displaystyle \therefore f^{-1}(x)=\frac{3x+2}{5x-3}=f(x)$$
  • Question 10
    1 / -0
    The inverse of the function $$\displaystyle f(x) = \log_{2}(x+\sqrt{x^{2}+1}) $$ is
    Solution
    We have to find the inverse of $$f(x)$$ which means $$f$$ is one one and onto function 
    Let $$\displaystyle f\left ( x \right )= y= \log _{2}\left (

    x+\sqrt{x^{2}+1} \right )$$
    $$\displaystyle \therefore 2^{y}=

    x+\sqrt{x^{2}+1}$$ ...(i)
    $$\displaystyle 2^{-y}=

    \frac{1}{x+\sqrt{x^{2}+1}}= \frac{\sqrt{x^{2}+1}-x}{1}$$ ...(ii)

    By subtracting (i) and (ii) we have
    $$ \therefore 2^{y}-2^{-y}=

    2x$$
    or $$\displaystyle x= \frac{1}{2}\left ( 2^{y}-2^{-y} \right )$$
    $$\displaystyle

    \therefore f^{-1}\left ( y \right )= \frac{1}{2}\left ( 2^{y}-2^{-y}

    \right )$$
    Replace $$\displaystyle y\rightarrow x$$
    $$\displaystyle \therefore f^{-1}\left ( x \right )= \frac{1}{2}\left ( 2^{x}-2^{-x} \right )$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now