Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 47

Result Self Studies

Relations and Functions Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The inverse of the function $$\log_{e}x$$  is 
    Solution
    $$y=f^{ -1 }\left( x \right) $$

    $$ \Rightarrow x=f\left( y \right) =\log _{ e }{ y } $$

    $$\Rightarrow y={ e }^{ x }$$
  • Question 2
    1 / -0
    If $$\displaystyle A= \left \{ a,b,c,d \right \}, B= \left \{ 1,2,3 \right \}$$ find whether or not the following sets of ordered pairs are relations from $$A$$ to $$B$$ or not.
    $$\displaystyle R_{1}= \left \{ \left ( a,1 \right ), \left ( a,3 \right ) \right \}$$
    $$\displaystyle R_{2}= \left \{ \left ( a,1 \right ), \left ( c,2 \right ), \left ( d,1 \right ) \right \}$$
    $$\displaystyle R_{3}= \left \{ \left ( a,1 \right ), \left ( b,2 \right ), \left ( 3,c \right ) \right \}.$$
    Solution
    Given, $$ A= \left \{ a,b,c,d \right \}, B= \left \{ 1,2,3 \right \}$$  and 
    $$ R_{1}= \left \{ \left ( a,1 \right ), \left ( a,3 \right ) \right \} $$
    $$ R_{2}= \left \{ \left ( a,1 \right ), \left ( c,2 \right ), \left ( d,1 \right ) \right \} $$
    $$ R_{3}= \left \{ \left ( a,1 \right ), \left ( b,2 \right ), \left ( 3,c \right ) \right \}.$$
    We know that every relation from $$A$$ to $$B$$ will be a subset of $$A \times B$$.
    Thus, both $$ R_{1} $$ and  $$R_{2} $$  are subsets of $$ A\times B$$  and hence are relations but $$ R_{3}$$ is not a relation because $$R_{3}$$  is not a subset of $$A\times B$$ because the element $$ (3,c) \notin (A\times B).$$ It belongs to $$B\times A.$$
  • Question 3
    1 / -0
    If $$\displaystyle X= \left \{ 1,2,3,4,5 \right \}, Y= \left \{ 1,3,5,7,9 \right \}$$ determine which of the following sets are mappings, relations or neither from A to B:
    (i)$$\displaystyle F= \left \{ \left ( x,y \right ) \because y= x+2, x \in X, y \in Y \right \}$$
    Solution
    Given def of F as 
    $$\displaystyle F= \left \{ \left ( x,y \right ) \because y= x+2, x \epsilon X, y \epsilon Y \right \}$$
    where $$\displaystyle X= \left \{ 1,2,3,4,5 \right \}, Y= \left \{ 1,3,5,7,9 \right \}$$ 

    So, we get $$\left \{ \left ( 1,3 \right ), \left ( 2,4 \right ), \left ( 3,5 \right ), \left ( 4,6 \right ), \left ( 5,7 \right ) \right \} $$
    Since, $$\displaystyle y \in Y$$ and in the above 4,6 do not belong to Y.
    $$\displaystyle \therefore $$ we exclude the ordered pair (2,4) and (4,6)
    $$\displaystyle \therefore \displaystyle  F=\left \{ \left ( 1,3 \right ), \left ( 3,5 \right ), \left ( 5,7 \right ) \right \}$$
    F is not a mapping because the elements 2,4 $$\displaystyle \epsilon X$$ do not have any image. $$\displaystyle F\subset X\times Y$$ and hence F is a relation from X to Y.

  • Question 4
    1 / -0
    Let $$f(x)=x^{2}-2x$$ and $$g(x)=f(f(x)-1)+f(5-f(x)),$$ then
    Solution
    Given, $$ f(x) = x^2 - 2x $$
    Now, $$ f(f(x) - 1) \\ = f(x^2 - 2x - 1 ) \\ = (x^2 - 2x - 1 )^2 - 2 (x^2 - 2x - 1 ) $$
    And, $$ f(5 - f(x) ) \\ = f(5 - x^2 + 2x ) \\ = (5 - x^2 + 2x )^2 - 2 (5 - x^2 + 2x ) $$
    Hence, $$ g(x) = f(f(x) - 1) + f (5 - f(x)) \\ \therefore g(x) = (x^2 - 2x - 1)^2 - 2 (x^2 - 2x -1 ) + (5 - x^2 + 2x )^2 - 2(5 - x^2 + 2x ) \\ \Rightarrow g(x) = (x^2 - 2x - 1)^2 + (5- x^2 + 2x)^2 - 2(x^2 - 2x - 1 + 5 - x^2 + 2x) \\ \therefore g(x) = (x^2 + 2x - 1 )^2 + ( 5 - 2x ^2 + 2 x^2)^2 - 8$$
    Since the first two terms are in square,
    $$\therefore $$ it can not be negative and if x = 9 then we also get positive value.
    $$\therefore g(x) \geq 0 \, \,  \forall x \in R $$
    $$ \therefore $$ option D is correct 
  • Question 5
    1 / -0
    Let $$R$$ be a relation from a set $$A$$ to a set $$B$$,then
    Solution
    If $$R$$ is a relation from $$A$$ to $$B$$ then $$R$$ is the subset of $$A \times B$$ because it contains all the possible mappings from $$A$$ to $$B$$.
  • Question 6
    1 / -0
    If $$f:R\rightarrow R$$ and $$g:R\rightarrow R$$ are functions defined by $$f(x)=3x-1; g(x)=\sqrt{x+6}$$, then the value of $$(g\circ f^{-1})(2009)$$ is 
    Solution
    Given $$f(x)=3x-1, g(x)=\sqrt{x+6}$$
    Let $$f(x)=y$$
    $$ \Rightarrow y=3x-1\Rightarrow y+1-3x\Rightarrow x=\cfrac{y+1}{3}$$
    Now, $$ f^{-1}(y)=x=\cfrac{y+1}{3}$$
    $$\Rightarrow f^{-1}(x)=\cfrac{x+1}{3}$$ and $$g(x)=\sqrt {x+6}$$
    Consider, $$(g\circ f^{-1})(2009)=g[{f^{-1}(2009)}]$$
    $$ =g\left(\cfrac{2009+1}{3}\right)=g\left(\cfrac{2010}{3}\right)$$
    $$=\sqrt{\cfrac{2010}{3}+6}=\sqrt{\cfrac{2028}{3}}=\sqrt{676}=26$$
    Hence, option $$A$$ is correct.
  • Question 7
    1 / -0
    Find inverse $$f(x)=\log_{e}(x+\sqrt{x^{2}+1})$$
    Solution
    $$y=\log(x+\sqrt{x^{2}+1})$$

    $$\Rightarrow e^{y}=x+\sqrt{x^{2}+1}$$

    $$\Rightarrow e^{y}-x=\sqrt{x^{2}+1}$$

    $$\Rightarrow x^{2}-2xe^{y}+e^{2y}=x^{2}+1$$

    $$\Rightarrow e^{2y}=1+2xe^{y}$$

    $$\Rightarrow 2x=\dfrac{e^{2y}-1}{e^{y}}$$

    $$\Rightarrow x=\dfrac{e^{y}-e^{-y}}{2}$$
    Replacing x with y
    $$f^{-1}(x)=\dfrac{e^{x}-e^{-x}}{2}$$

    $$=\sinh(x)$$
  • Question 8
    1 / -0
    Let $$f:[2,\infty)\rightarrow [1,\infty)$$defined by $$f(x)=2^{x^{4}-4x^{2}}$$ and $$\displaystyle g:\left[ \frac{\pi}{2},\pi \right] \rightarrow A$$ defined by $$ \displaystyle g(x)=\frac {\sin x+4}{\sin x-2}$$ be two invertible functions, then
    $$f^{-1}(x)$$ is equal to
    Solution
    $$\because  ff^{-1}(x)=x$$
    $$2^{(f^{-1}(x))^{4}}-4^{(f^{-1}(x))^{2}}=x$$
    $$\Rightarrow  (f^{-1}(x))^{4}-4(f^{-1}(x))^{2}=\log _{2}x=0$$
    $$\therefore  (f^{-1}(x))^{2}=2+\sqrt{4+\log _{2}x}$$
    $$\therefore $$ Range of $$f^{-1}(x)$$ is $$(2, \infty )$$.
    $$\therefore  f^{-1}(x)=\sqrt{2+\sqrt{4+\log _{2}x}}$$
  • Question 9
    1 / -0
    If $$f_{0}(x)\, =\, \dfrac{x}{(x\, +\, 1)}$$ and $$f_{n\, +\, 1}\, =\, f_{0}\circ f_{n}(x)$$ for $$n = 0, 1, 2,\cdots$$ then $$f_{n}(x)$$ is
    Solution
    Given $$f_{0}\left(x\right)=\dfrac{x}{ \left(x\, +\, 1\right)}\cdots\cdots\left(1\right)$$

    Also given $$f_{n\, +\, 1}\, =\, f_{0}\, o\, f_{n}$$ for $$(n = 0, 1, 2,\cdots)\ldots\left(2\right)$$

    Put $$n=0$$ in eqn (2)

    $$f_1=f_{0} o f_0$$

    $$f_1\left(x\right)=f_{0}[f_{0}\left(x\right)]$$

    $$\Rightarrow f_{1}\left(x\right)=f_{0}\left(\dfrac{x}{x+1}\right)$$

    $$=\dfrac{\dfrac{x}{x+1}}{\dfrac{x}{x+1}+1}$$

    $$=\dfrac{x}{2x+1}$$

    $$\Rightarrow f_1\left(x\right)=\dfrac{x}{2x+1}$$

    Put $$n=1$$ in eqn $$(2)$$

    $$f_2=f_{0} o f_1$$

    $$f_2\left(x\right)=f_{0}[f_{1}\left(x\right)]$$

    $$\Rightarrow f_{2}\left(x\right)=f_{0}\left(\dfrac{x}{2x+1}\right)$$

    $$=\dfrac{\dfrac{x}{2x+1}}{\dfrac{x}{2x+1}+1}$$

    $$=\dfrac{x}{3x+1}$$

    $$\Rightarrow f_2\left(x\right)=\dfrac{x}{3x+1}$$

    Hence, $$f_n\left(x\right)=\dfrac{x}{\left(n+1\right)x+1}$$
  • Question 10
    1 / -0
    If the function $$f : R \rightarrow$$ A given  by $$f(x)\, =\, \displaystyle \frac{x^{2}}{x^{2}\, +\, 1}$$ is a surjection, then A is
    Solution
    As 'f' is surjective,
    Range of f = co-domain of 'f'
    $$\implies$$ A = range of 'f'
    Since, $$f(x)=\dfrac{x^2}{x^2+1}$$
    $$\implies$$ $$y=\dfrac{x^2}{x^2+1}$$
    $$\implies$$ $$y(x^2+1)=x^2$$
    $$\implies$$ $$(y-1)x^2+y=0$$
    $$\implies$$ $$x^2=\dfrac{-y}{y-1}$$
    $$\implies$$ $$x=\sqrt{\dfrac{y}{1-y}}$$
    $$\implies$$ $$\dfrac{y}{1-y} \geq 0$$
    $$\implies$$ $$y \epsilon [0,1)$$
    $$\implies$$ $$A=[0,1)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now