Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 48

Result Self Studies

Relations and Functions Test - 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)=\begin{cases} 2x+3\quad \quad x\le 1 \\ a^{ 2 }x+1\quad x>1 \end{cases}$$, then the values of $$a$$ for which $$f(x)$$ is injective. 
    Solution
    A function is called injective (one-one) if it is monontonic.
    Clearly for $$x<1$$ f is increasing and it's maximum values is $$2(1)+3=5$$
    Hence for f to be monotonic $$(x>1)$$, $$f(1) \geq 5$$
    $$\Rightarrow a^2(1)+1\geq 5 \Rightarrow a^2\geq 2 \Rightarrow a\in R-(-2,2)$$
  • Question 2
    1 / -0
    The relation $$R$$ defined in $$A=\left\{ 1,2,3, \right\} $$ by $$a\ R$$ $$b$$ if $$\left| { a }^{ 2 }-{ b }^{ 2 } \right| \le 5$$. Which of the following is false? 
    Solution
    $$R=\left\{ (1,1),(2,2),(3,3),(2,1),(1,2),(2,3),(3,2) \right\} $$

    Clearly $$R^{-1} = R$$

    Domain $$=\{1,2,3\}$$ Range $$=\{1,2,3\}$$

    Hence option 'D' is a false statement with regard to $$R$$.
  • Question 3
    1 / -0
    If the function $$f:[1,\infty )\rightarrow [1,\infty )$$ is defined by $$f\left( x \right) ={ 2 }^{ x\left( x-1 \right)  },$$ then $${ f }^{ -1 }\left( x \right) $$ is
    Solution
    $$\displaystyle f\left( x \right)={ 2 }^{ x\left( x+1 \right)  },$$ i.e.,  $$y={ 2 }^{ x\left( x+1 \right)  },$$

    $$\displaystyle \Rightarrow \log _{ 2 }{ y } =x\left( x-1 \right) ={ x }^{ 2 }-x$$

    $$\Rightarrow { x }^{ 2 }-x-\log _{ 2 }{ y } =0$$

    $$\displaystyle \Rightarrow x=\frac { 1\pm \sqrt { 1+4\log _{ 2 }{ y }  }  }{ 2 } $$

    Since $$x\in [1,\infty )$$   $$\therefore$$ -ve sign is ruled out.

    $$\displaystyle \therefore \Rightarrow x=\frac { 1 }{ 2 } \left( 1+\sqrt { 1+4\log _{ 2 }{ y }  }  \right) $$

    $$\displaystyle \Rightarrow f^{ -1 }\left( x \right) =\frac { 1 }{ 2 } \left( 1+\sqrt { 1+4\log _{ 2 }{ y }  }  \right) $$

    $$\displaystyle \Rightarrow f^{ -1 }\left( x \right) =\frac { 1 }{ 2 } \left( 1+\sqrt { 1+4\log _{ 2 }{ x }  }  \right) $$
  • Question 4
    1 / -0
    If $$g(x)=1+\sqrt { x } $$ and $$f(g(x))=3+2\sqrt { x } +x$$, then $$f(x)=$$
    Solution
    We have $$g\left( x \right)=1+\sqrt { x } $$ and $$f(g(x))=3+2\sqrt { x } +x$$   ...(1)

    Also, $$f\left( g\left( x \right) \right) =f\left( 1+\sqrt { x }  \right) $$   ...(2)

    From (1) and (2), we get

    $$f\left( 1+\sqrt { x }  \right) =3+2\sqrt { x } +x$$

    Let $$1+\sqrt { x } =y\Rightarrow x={ \left( y-1 \right)  }^{ 2 }$$

    $$\therefore f\left( y \right) =3+2\left( y-1 \right) +{ \left( y-1 \right)  }^{ 2 }\\ =3+3y-2+{ y }^{ 2 }-2y+1=2+{ y }^{ 2 }\\ \therefore f\left( x \right) =2+{ x }^{ 2 }$$
  • Question 5
    1 / -0
    Let $$X=\left\{ 1,2,3,4 \right\} $$ and $$Y=\left\{ 1,2,3,4 \right\} $$. Which of the following is a relation from $$X$$ to $$Y$$.
    Solution
    Given $$X=\left\{ 1,2,3,4 \right\} $$ and $$Y=\left\{ 1,2,3,4 \right\} $$

    $$X\times Y=\{ (1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)$$
                        $$(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)\} $$

    Now, $$R_1=\{(1,3),(2,2)\}$$

    Since, $$R_1\subset X\times Y$$

    Hence, $$R_1$$ is a relation from $$X$$ to $$Y$$

    $${R}_{2}=\left\{ (1,1),(2,1),(3,3),(4,3),(5,5) \right\} $$

    Since, $$(5,5) \in R_2$$ but $$\notin X\times Y$$

    So, $$R_2$$ is not a relation from $$X$$ to$$Y$$

    $${R}_{3}=\left\{ (1,1),(1,3),(3,5),(3,7),(5,7) \right\} $$

    Since, $$(3,5),(3,7),(5,7) \in R_3$$ but $$\notin X\times Y$$

    So, $$R_3$$ is not a relation from $$X$$ to $$Y$$

    $${R}_{4}=\left\{ (1,3),(2,5),(2,4),(7,9) \right\} $$

    Since, $$(2,5),(7,9) \in R_4$$ but $$\notin X\times Y$$

    So, $$R_4$$ is not a relation from $$X$$ to $$Y$$
  • Question 6
    1 / -0
    Let $$f:\left( 4,6 \right) \rightarrow \left( 6,8 \right) $$ be a function defined by $$f(x)=x+2$$ (where $$[.]$$ denote the greatest integer function), then $$f^{ -1 }\left( x \right) $$ is equal to
    Solution
    Since $$f:\left( 4,6 \right) \rightarrow \left( 6,8 \right) $$

    $$f\left( x \right) =x+2$$

    Let $$y=x+2\Rightarrow x=y-2$$

    $$f^{ -1 }\left(y \right) =y-2$$

    Replacing $$x$$ by $$y$$ and $$y$$ by $$x$$, we get

    $$f^{ -1 }\left( x \right) =x-2$$
  • Question 7
    1 / -0
    Which of the following is an onto function
    Solution
    A function is called onto iff,  Range$$=$$ co-domain.
    A. In $$[0,\pi]$$, Range of $$\sin x$$ is $$[0,1]\Rightarrow$$ Not onto. 
    B. In $$[0,\pi]$$, Range of $$\cos x$$ is $$[-1,1] =$$co-domain  $$\Rightarrow $$onto function.                          
    C.
    Range of $$e^x$$ is $$(0, \infty)\neq$$ co-domain.
    D.
    Range of  $$x^3$$  is not R, since $$x\in Q$$
  • Question 8
    1 / -0
    Let f : {x,y,z} $$\rightarrow$$ {a,b,c} be a one-one function. It is known that only one of the following statment is true, and only one such function exists :

    find the function f (as ordered pair).(i) f(x) $$\neq$$ b
    (i) f(y) = b

    (ii) f(z) $$\neq$$ a
    Solution
    When (i) is true, then $$f(x) \neq b, f(y) \neq b , f(z) = a,b,c $$

    $$\Rightarrow$$ Two ordered pair function is possible $$ f(x) = a, f(y) = c, f(z) = b$$ or $$f(x) = c, f(y) = a, f(z) = b$$

    But given $$f$$ is one-one and only one such function is possible. Hence (i) can't be true.

    When (ii) is true, then $$f(y) = b, f(z) =c , f(x) = a\Rightarrow f(x) = a, f(y) = b, f(z) = c$$

    Clearly if (ii) is true then it is  satisfying every condition.

    Hence ordered pair of $$f$$ is $$\{(x,a), (y,b), (z,c)\}$$
  • Question 9
    1 / -0
    Suppose f and g both are linear function with $$\displaystyle f(x)=-2x+1$$  and $$\displaystyle f \left ( g\left ( x \right ) \right )=6x-7$$ then slope of line $$y=g(x)$$ is
    Solution
    Given, $$f(x)=-2x+1$$

    $$\therefore f(g(x))=-2g(x)+1=6x-7$$

    $$\Rightarrow g(x)=-3x+4$$

    $$\Rightarrow g'(x)=-3$$

    Hence slope of $$g(x)$$ is $$-3$$
  • Question 10
    1 / -0
    If $$f(x)=\begin{cases} x+1,\quad \quad if\quad x\, \leq \, 1 \\ 5-x^{ 2 }\quad \quad if\quad x>1 \end{cases},g(x)=\begin{cases} x\quad \quad if\quad x\leq 1 \\ 2-x\quad if\quad x>1 \end{cases}$$

    and $$x\, \in\, (1, 2)$$, then $$g(f(x))$$ is equal to
    Solution
    $$x\, \epsilon\, (1, 2)$$

    Hence for x >1, $$f(x) = 5-x^2$$and $$f(x) \epsilon (1,4) $$

    $$f(x) >1$$

    $$g(f(x)) = 2 - f(x)=  2-5+x^2 = x^2-3$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now