Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 52

Result Self Studies

Relations and Functions Test - 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If f(x) + f(1-x) = 10 then the value of $$\displaystyle f\left ( \frac{1}{10} \right )+f\left ( \frac{2}{10} \right )+.........+f\left ( \frac{9}{10} \right )$$
    Solution
    $$ f(\dfrac {1}{10})  + f(\dfrac {2}{10})   +  f(\dfrac {3}{10})   + f(\dfrac {4}{10})   + f(\dfrac {5}{10})   + f(\dfrac {6}{10})   + f(\dfrac {7}{10})   + f(\dfrac {8}{10})  +  f(\dfrac {9}{10})   $$

    $$  = [f(\dfrac {1}{10})  + f(\dfrac {9}{10}) ] + [ f(\dfrac {2}{10})   +  + f(\dfrac {8}{10}) ] + [ f(\dfrac {3}{10})   +  + f(\dfrac {7}{10}) ] + [ f(\dfrac {4}{10})   + f(\dfrac {6}{10}) ]  + f(\dfrac {5}{10})   ]   $$

    $$ = 10 + 10 + 10 + 10 + 5 = 45 $$
  • Question 2
    1 / -0
    If $$f (x) = 2x - 1$$ and $$g (x) = 3x + 2$$, then find $$(fog) (x)$$ :
    Solution
    $$fog(x)=2(3x+2)-1=6x+4-1=6x+3=3(2x+1)$$
  • Question 3
    1 / -0
    If $$\displaystyle R=R^{-1}$$ then the relation R is ________
    Solution
    When  a relation is equal to its inverse, then the relation is symmetric.
  • Question 4
    1 / -0
    If $$\displaystyle f(x)=2x^{3}+7x-5\, and\, g(x)=f^{-1}(x)$$ then g' (4) is equal to
    Solution
    Given, $$f(x)=2x^3+7x-5$$
    $$\therefore f'(x)= 6x ^2+7$$
    $$g(x) =f^{-1}(x)\Rightarrow g\{f(x)\}=x$$
    Differentiating both sides, w.r.t $$x$$
    $$\displaystyle {g}'\left ( f(x) \right )=\frac{1}{f'\left ( x \right )}=\frac{1}{6x^{2}+7}$$
    when $$x = 1,f(x) = 4$$
    $$\therefore \displaystyle g'\left ( 4 \right )=\frac{1}{13}$$
  • Question 5
    1 / -0
    If $$f(x) = -x^2+1, g(x) = -\sqrt[3]{x}$$ then (gofogofogogog) (x) is.
    Solution
    If $$f(x) = -x^2+1$$......

    $$f(x) = -x^2+1, g(x) = -\sqrt[3]{x}$$........

    $$\Rightarrow$$ $$f$$ is even and $$g$$ is odd

    $$\therefore$$ $$gogog$$ is even

    $$\Rightarrow$$ $$fogogog$$ is even

    $$\Rightarrow$$ $$gofogofogogog$$ is even.
  • Question 6
    1 / -0
    If the function $$f(x) = x^3 + e^{x/2}$$ and $$g(x) = f^{-1}(x)$$; then the value of g'(1) is
    Solution
    $$f(x) =x^3+e^{x/2}$$
    $$\displaystyle f'(x) = 3x^2+\frac{1}{2}e^{x/2}$$
    Given g is inverse of f $$\Rightarrow g(f(x))=x$$
    Differentiating both sides w.r.t $$x$$
    $$\displaystyle g'(f(x)).f'(x) =1\Rightarrow g'(f(x))=\frac{1}{f'(x)} $$
    Clearly $$\displaystyle f'(0)=1\therefore g'(1)=g'(f(0))=\frac{1}{f'(0)}=2$$
  • Question 7
    1 / -0
    If f(x)=2x-1 and g(x)=3x+2  then find (fog) (x)
    Solution
    $$(fog)(x) = f(g(x)) = 2(3x+2) -1 = 6x+4-1 = 6x+3 = 3(2x+1) $$
  • Question 8
    1 / -0
    If f(x) = 2x+1 and g(x) = 3x-5 then find $$\left ( fog \right )^{-1}\left ( 0 \right )$$
    Solution
    $$ (fog)(x) = f(g(x)) = 2(3x-5) + 1  = 6x-10 + 1 = 6x-9 $$

    Let $$ (fog)(x)= y $$
    Then, to find $$ (fog)^{-1} (x)$$, we find $$ x $$ in terms of $$y $$

    So, $$ 6x-9 = y $$
    $$ => x = \dfrac {y+9}{6} $$

    $$ => (fog)^{-1} (x)= \dfrac {y+9}{6} $$

    $$ => (fog)^{-1} (0)= \dfrac {0+9}{6} = \dfrac {3}{2} $$
  • Question 9
    1 / -0
    If X = {2,3,5,7,11} and Y = {4,6,8,9,10} then find the number of one-one functions from X to Y
    Solution
    Both sets X and Y have the same number of elements.

    When two sets have same number of $$ n $$ elements, then the number of one to one functions from one set to the other is $$ n! $$

    So, number of one to one functions from X to Y $$ = 5 ! = 5 \times 4 \times 3 \times 2 \times 1 = 120 $$
  • Question 10
    1 / -0
    Find $$\left( f\circ g \right) \left( 3 \right) $$ when $$f\left( x \right) =7x-6$$ and $$g\left( x \right) =5{ x }^{ 2 }-7x-6$$.
    Solution
    We have, $$f(x)=7x-6$$ and $$g(x)=5x^2-7x-6$$
    Then,$$(f\circ g)(x)$$
    $$=f(g(x))$$
    $$=f(5x^2-7x-6)$$
    $$=7(5x^2-7x-6)-6$$
    $$=35x^2-49x-42-6$$
    $$=35x^2-49x-48$$
    $$\therefore (f\circ g)(3)$$
    $$=35(3)^2-49(3)-48$$
    $$=315-147-48$$
    $$=120$$
    So, $$\text{D}$$ is the correct option.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now