Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 61

Result Self Studies

Relations and Functions Test - 61
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$f(x)=\cot ^{ -1 }{ \left( \cfrac { 1-{ x }^{ 2 } }{ 2x }  \right)  } +\cot ^{ -1 }{ \left( \cfrac { 1-3{ x }^{ 2 } }{ 3x-{ x }^{ 3 } }  \right)  } -\cot ^{ -1 }{ \left( \cfrac { 1-6{ x }^{ 2 }+{ x }^{ 4 } }{ 4x-4{ x }^{ 3 } }  \right)  } $$, the $$F'(x)$$ equals
    Solution
    $$F(x)=\tan ^{ -1 }{ \left( \cfrac { 2x }{ 1-{ x }^{ 2 } }  \right)  } +\tan ^{ -1 }{ \left( \cfrac { 3x-{ x }^{ 3 } }{ 1-3{ x }^{ 2 } }  \right)  } -\tan ^{ -1 }{ \left( \cfrac { 4x-4{ x }^{ 3 } }{ 1-6{ x }^{ 2 }+{ x }^{ 4 } }  \right)  } $$
    $$=2\tan ^{ -1 }{ x } +3\tan ^{ -1 }{ x } -4\tan ^{ -1 }{ x }
    \\=\tan ^{ -1 }{ x } $$

    $$\Rightarrow F'(x)=\cfrac { 1 }{ 1+{ x }^{ 2 } } $$
  • Question 2
    1 / -0
    If $$f(x)=\left| x \right| ,x\in R$$, then
    Solution

  • Question 3
    1 / -0
    If $$g(x)={ x }^{ 2 }+x-2$$ and $$\cfrac { 1 }{ 2 } (g\circ f)(x)=2{ x }^{ 2 }-5x+2$$, then $$f(x)$$ is
    Solution
    $$\cfrac { 1 }{ 2 } \left( g\circ f \right) (x)=2{ x }^{ 2 }-5x+2$$

    $$\Rightarrow \cfrac { 1 }{ 2 } g\left[ f(x) \right] =2{ x }^{ 2 }-5x+2\quad $$

    $$\left[ { \left\{ f(x) \right\}  }^{ 2 }+\left\{ f(x) \right\} -2 \right] =2\left[ 2{ x }^{ 2 }-5x+2 \right] \quad \left[ \because g(x)={ x }^{ 2 }+x-2 \right] $$

    $$\Rightarrow f{ \left( x \right)  }^{ 2 }+f(x)-\left( 4{ x }^{ 2 }-10x+6 \right) =0$$  ....represents quadratic equation

    We have a formula for solving quadratic equation $$ax^2+bx+c=0$$ is

    $$x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$$

    $$\therefore f(x)=\cfrac { -1\pm \sqrt { 1+4\left( 4{ x }^{ 2 }-10x+6 \right)  }  }{ 2 } $$

    $$=\cfrac { -1\pm(4x-5) }{ 2 } =2x-3$$ or $$2-2x$$
  • Question 4
    1 / -0
    If $$(ax^2 + bx + c)y +a'x^2+b'x+c=0$$, then the condition that x may be a rational function of y is
    Solution

  • Question 5
    1 / -0
    If $$f(x)=\sin ^{ 2 }{ x } +\sin ^{ 2 }{ \left( x+\cfrac { \pi  }{ 3 }  \right)  } +\cos { x } \cos { \left( x+\cfrac { \pi  }{ 3 }  \right)  } $$ and $$g\left( \cfrac { 5 }{ 4 }  \right) =1$$, then $$g\circ f(x)$$ is equal to
    Solution
    Given, $$f(x)=\sin ^{ 2 }{ x } +\sin ^{ 2 }{ \left( x+\cfrac { \pi  }{ 3 }  \right)  } +\cos { x } \cos { \left( x+\cfrac { \pi  }{ 3 }  \right)  } $$
    $$=\sin ^{ 2 }{ x } +\left( \sin { x } \cos { \cfrac { \pi  }{ 3 }  } +\cos { x } \sin { \cfrac { \pi  }{ 3 }  }  \right) +\cos { x } \left( \cos { \cfrac { \pi  }{ 3 }  } -\sin { x } \sin { \cfrac { \pi  }{ 3 }  }  \right) $$
    $$=\sin ^{ 2 }{ x } +\cfrac { \sin ^{ 2 }{ x }  }{ 4 } +\cfrac { 3\cos ^{ 2 }{ x }  }{ 4 } +\cfrac { 2\sqrt { 3 }  }{ 2.2 } \sin { x } \cos { x } +\cfrac { \cos ^{ 2 }{ x }  }{ 2 } -\cos { x } \sin { x } \cfrac { \sqrt { 3 }  }{ 2 } $$
    $$=\cfrac { 5 }{ 4 } \left( \sin ^{ 2 }{ x } +\cos ^{ 2 }{ x }  \right) =\cfrac { 5 }{ 4 } \quad $$
    Therefore, $$ g\circ f(x)=g(f(x))=g\left( \cfrac { 5 }{ 4 }  \right) =1\quad \quad $$
  • Question 6
    1 / -0
    If $$f(x)=ax+b $$ and $$g(x)=cx+d$$, then $$f\left( g(x) \right) =g\left( f(x) \right) \Leftrightarrow$$
    Solution
    We have $$f(x)=ax+b,g(x)=cx+d$$
    Therefore, $$ f\left\{ g(x) \right\} =g\left\{ f(x) \right\} \Leftrightarrow f(cx+d)=g(ax+b)$$
    $$\Leftrightarrow a(cx+d)+b=c(ax+b)+d$$
    $$\Leftrightarrow ad+b=cb+d\Leftrightarrow f(d)=g(b)$$
  • Question 7
    1 / -0
    The inverse of the function $$f(x) = \log (x^{2} + 3x + 1), x\epsilon [1, 3]$$, assuming it to be an onto function, is
    Solution
    Given, $$f(x) = \log (x^{2} + 3x + 1)$$
    Therefore, $$ f'(x) = \dfrac {2x + 3}{(x^{2} + 3x + 1)} > 0\forall x\epsilon [1, 3]$$
    which is a strictly increasing function. Thus, $$f(x)$$ is injective, given that $$f(x)$$ is onto. Hence, the given function $$f(x)$$ is invertible.
    Now, $$f\left \{f^{-1}(x)\right \} = x$$
    $$\Rightarrow \log \left \{f^{-1}(x)\right \}^{2} + 3\left \{f^{-1}(x) + 1 \right \} = x$$
    $$\Rightarrow \left \{f^{-1}(x)\right \}^{2} + 3\left \{f^{-1}(x)\right \} + 1 - e^{x} = 0$$
    Thus $$ f^{-1}(x) = \dfrac {-3\pm \sqrt {9 - 4.1 (1 - e^{x})}}{2}$$
    $$= \dfrac {-3\pm \sqrt {5 + 4e^{x}}}{2}$$
    $$= f^{-1}(x) = \dfrac {-3\pm \sqrt {5 + 4e^{x}}}{2} [\because f^{-1}(x) \epsilon [1, 3]]$$
    Hence, $$f^{-1}(x) = \dfrac {-3 + \sqrt {5 + 4e^{x}}}{2}$$
  • Question 8
    1 / -0
    If $$\ast$$ is defined by $$a\ast b = a - b^{2}$$ and $$\oplus$$ is defined by $$a\oplus b = a^{2} + b$$, where $$a$$ and $$b$$ are integers, then $$(3\oplus 4)\ast 5$$ is equal to
    Solution
    Given, $$a\ast b = a - b^{2} $$    .... (i)

    and $$a\oplus b = a^{2} + b$$     .... (ii)

    where, $$a$$ and $$b$$ are integers

    Then, $$(3\oplus 4) \ast 5 = \left \{(3)^{2} + 4\right \}\ast 5$$

    $$= (9 + 4) \ast 5 = 13\ast 5$$

    $$= 13 - (5)^{2} = 13 - 25 = -12$$
  • Question 9
    1 / -0
    If $$f\left( x \right) $$ and $$g\left( x \right) $$ are two functions with $$g\left( x \right) =x-\dfrac { 1 }{ x } $$ and $$f\circ g\left( x \right) ={ x }^{ 3 }-\dfrac { 1 }{ { x }^{ 3 } } $$, then $$f^{ ' }\left( x \right) $$ is equal to
    Solution
    $$f\circ g\left( x \right) ={ x }^{ 3 }-\dfrac { 1 }{ { x }^{ 3 } } $$
    Writing $${ x }^{ 3 }-\dfrac { 1 }{ { x }^{ 3 } } $$ using $${ \left( a-b \right)  }^{ 3 }={ a }^{ 3 }-{ b }^{ 3 }-3ab\left( a-b \right) $$, we have
    $${ \left( x-\dfrac { 1 }{ x }  \right)  }^{ 3 }={ x }^{ 3 }-\dfrac { 1 }{ { x }^{ 3 } } -3x\cdot \dfrac { 1 }{ x } \left( x-\dfrac { 1 }{ x }  \right) $$
    $$\Rightarrow { x }^{ 3 }-\dfrac { 1 }{ { x }^{ 3 } } ={ \left( x-\dfrac { 1 }{ x }  \right)  }^{ 3 }+3\left( x-\dfrac { 1 }{ x }  \right) $$
    We have,
    $$f\left( g\left( x \right)  \right) ={ x }^{ 3 }-\dfrac { 1 }{ { x }^{ 3 } } ={ \left( x-\dfrac { 1 }{ x }  \right)  }^{ 3 }+3\left( x-\dfrac { 1 }{ x }  \right) $$
    As $$g\left( x \right) =x-\dfrac { 1 }{ x } $$, this yields
    $$f\left( x-\dfrac { 1 }{ x }  \right) ={ \left( x-\dfrac { 1 }{ x }  \right)  }^{ 3 }+3\left( x-\dfrac { 1 }{ x }  \right) $$
    On putting $$x-\dfrac { 1 }{ x } =t$$, we get
    $$f\left( t \right) ={ t }^{ 3 }+3t$$
    Thus, $$f\left( x \right) ={ x }^{ 3 }+3x$$
    and $$f^{ ' }\left( x \right) =3{ x }^{ 2 }+3$$
  • Question 10
    1 / -0
     If $$f:R\rightarrow R$$, $$g:R\rightarrow R$$ are defined by$$ f(x)=5x-3$$, $$g(x)=x^{2}+3$$, then $$(gof^{-1})(3)$$=
    Solution
    $$f:R\rightarrow R$$
    $$ g:R\longrightarrow R$$
    $$ f\left( x \right) =5x-3$$
    $$g\left( x \right) ={ x }^{ 2 }+3$$
    $$\left(gof^{-1}\right)\left(3\right)$$
    $$f\left(x\right)={5}{x}-{3}$$
    Let $$f\left(x\right)=y$$           $$\Rightarrow{x}=f^{-1}\left(y\right)$$
    $$f\left(x\right)=y={5}x-3$$
    $$\Rightarrow x=\dfrac{y+3}{5}$$
    $$\Rightarrow f^{-1}\left(y\right)=\dfrac{y+3}{5}$$
    $$ f^{-1}\left(x\right)=\dfrac{x+3}{5}$$  and    $$g\left(x\right)=x^{2}+{3}$$
    $$\left(gof^{-1}\right)\left(3\right)=g\left[f^{-1}\left(3\right)\right]=g\left(\dfrac{3+3}{5}\right)=g\left(\dfrac{6}{5}\right)$$
    $$=\left[\left(\dfrac{6}{5}\right)^{2}+3\right]=\dfrac{36}{25}+{3}=\dfrac{111}{25}$$
    Hence, $$\dfrac{111}{25}$$ is the correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now