Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 63

Result Self Studies

Relations and Functions Test - 63
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The inverse of the function $$y=\large{\frac{e^x-e^{-x}}{e^x+e^{-x}}}$$ is
    Solution
    Given $$y=\dfrac{e^x-e^{-x}}{e^x+e^{-x}}$$

    or, $$\dfrac{1+y}{1-y}=\dfrac{2e^x}{2e^{-x}}$$

    or, $$e^{2x}=\dfrac{1+y}{1-y} $$

    or, $$ x=\dfrac{1}{2}\log \dfrac{1+y}{1-y}$$

    So the inverse is $$\dfrac{1}{2}\log \dfrac{1+x}{1-x}$$.
  • Question 2
    1 / -0
    Let $$A = \{ 1,2,3,4,5,6\} .$$ The number of onto functions from $$A$$ to$$A$$ such that.$$f\left( x \right) \ne x$$ for all $$x \in A$$ is
    Solution
    $$A=\{1,2,3,4,5,6\}$$

    $$f:A\rightarrow A$$

    $$\therefore \  $$Number of onto function$$=n!$$

                                                $$ =6!$$

                                                $$ =6\times 5\times 4\times 3\times 2\times 1$$

    $$\therefore \  $$Number of onto function$$ =720$$
  • Question 3
    1 / -0
    If $$f: A\rightarrow A$$ defined by $$f(x) =\dfrac{4x +3}{6x-4}$$ where $$A= R-\dfrac{2}{3}$$. Find $$f^{-1}$$
    Solution
    $$f\left( x \right) =\cfrac { 4x+3 }{ 6x-4 } \\ let\quad y=\cfrac { 4x+3 }{ 6x-4 } \\ \Rightarrow 6xy-4y=4x+3\\ \Rightarrow 6xy-4x=3+4y\\ \Rightarrow x(6y-4)=3+4y\\ \Rightarrow x=\cfrac { 3+4y }{ 6y-4 } \\ Replace\quad x\quad by\quad y\quad \& \quad y\quad by\quad x.\\ y=\cfrac { 3+4x }{ 6x-4 } \\ f^{ ' }\left( x \right)=\cfrac { 4x+3 }{ 6x-4 } $$
  • Question 4
    1 / -0
    If the binary operation $$*$$ is defined on a set of integers as $$a * b  = a + 3  b ^{2} $$ , then the value of $$2 * 3$$ is
    Solution
    $$a\ast b =a+3b^{2}$$
    $$\Rightarrow 2\ast 3=2+3(3)^{2}$$
    $$=2+27$$
    $$=29$$
  • Question 5
    1 / -0
    The solution of  $$( 3 * 4) * 3$$,  when $$*$$ is a binary operation on Z such that: $$a * b = a + b$$, is.
    Solution
    Given $$( 3 * 4) * 3$$

    $$(3*4)*3=(3+4)+3$$     (as$$(a \ast b)=(a+b)$$)

    $$=7+3$$

    $$=10$$
  • Question 6
    1 / -0
    If $$g\left( x \right) = {x^2} + x - 2$$ and $$\frac{1}{2}gof\left( x \right) = 2{x^2} + 5x + 2$$, then $$f\left( x \right)$$ is
    Solution
    $$g(x)={ x }^{ 2 }+x-2\\ \cfrac { 1 }{ 2 } g(f(x))=2{ x }^{ 2 }+5x+2\\ \Rightarrow f^{ 2 }\left( x \right) +f(x)-2=4{ x }^{ 2 }-10x+4\\ \Rightarrow f^{ 2 }\left( x \right) +f(x)-(4{ x }^{ 2 }-10x+6)=0\\ f(x)=\cfrac { -1\pm \sqrt { 1+4(4{ x }^{ 2 }-10x+6) }  }{ 2 } \\ f(x)=\cfrac { -1\pm \sqrt { 1+16{ x }^{ 2 }-40x+24 }  }{ 2 } \\ f(x)=\cfrac { -1\pm (4x-5) }{ 2 } =(2x-3)$$
  • Question 7
    1 / -0
    If $$f\left( x \right)$$ is an invertible function, and $$g\left( x \right) = 2$$ $$f\left( x \right) + 5$$, then the value of $${g^{ - 1}}\left( x \right)$$  is
    Solution
    Given:$$g\left(x\right)=2f\left(x\right)+5$$
    Replace $$x\rightarrow\,{g}^{-1}{\left(x\right)}$$
    $$\Rightarrow\,g{g}^{-1}{\left(x\right)}=2f\left({g}^{-1}{\left(x\right)}\right)+5$$
    $$\Rightarrow\,x=2f\left({g}^{-1}{\left(x\right)}\right)+5$$
    $$\Rightarrow\,x-5=2f\left({g}^{-1}{\left(x\right)}\right)$$
    $$\Rightarrow\,f\left({g}^{-1}{\left(x\right)}\right)=\dfrac{x-5}{2}$$
    $$\Rightarrow\,{g}^{-1}{\left(x\right)}={f}^{-1}\left(\dfrac{x-5}{2}\right)$$
  • Question 8
    1 / -0
    Let f : $$R \to R$$ and g : $$R \to R$$ be two one-one and onto functions such that they are the mirror images of each other about the line y = 2. If h(x) = f(x) + g(x), then h(0) equal to
    Solution
    Given $$g(x)$$ and $$f(x)$$ are mirror images about $$y=2$$
    $$\implies g(x)-2=2-f(x)\implies f(x)+g(x)=4\implies h(x)=4$$
    $$h(0)=4$$
  • Question 9
    1 / -0
    Let $$A$$ be a set of $$4$$ elements and $$B$$ has $$3$$ elements . From the set of all functions from $$A$$ to $$B$$, the probability that it is an onto function is
    Solution
    No .of functions from $$A$$ to $$B$$ is $$3^4=81$$ elements 
    No.of onto functions $$4\times 3^2=36$$
    Probability $$\dfrac{36}{81}=\dfrac 49$$
  • Question 10
    1 / -0
    If $$f : A \rightarrow B $$ defined as $$f(x) = x^2+2x+\frac{1}{1+(x+1)^2}$$ is onto function, then set B is equal to
    Solution
    $$f:A\rightarrow B,\quad f(x)={ x }^{ 2 }+2x+\cfrac { 1 }{ 1+{ (x+1) }^{ 2 } } \\ \because \cfrac { 1 }{ 1+{ (x+1) }^{ 2 } } >0\\ \therefore f(x)={ x }^{ 2 }+2x+\cfrac { 1 }{ 1+{ (x+1) }^{ 2 } } \\ a=1,\quad b=2\\ D=4-4\times 1\times (\cfrac { 1 }{ +ve } )\quad \ge 0\\ \because x\epsilon R$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now