Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 64

Result Self Studies

Relations and Functions Test - 64
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$g(f(x) ) = |\sin x |$$ and $$f(g(x))=(\sin\sqrt x)^2$$ , then 
    Solution
    $$g(f(x))=|sinx|=\sqrt{(sinx)^2}\\f(g(x))=(sin\sqrt x )^2=sin^2\sqrt x\\\therefore f(x)=sin^2x \>and \>g(x)=\sqrt x$$
  • Question 2
    1 / -0
    Let $$f$$, $$g:R\rightarrow {R}$$ be two functions defined as $$ f\left( x \right) =\left| x \right| +x$$, $$ g\left( x \right) =\left| x \right| -x, \forall x\in R$$. Then, find $$fog(x)$$ 
    Solution
    $$f\left( x \right) = \left| x \right| + x$$
    $$g\left( x \right) = \left| x \right| - x$$
    $$fog\left( x \right) = f\left( {g\left( x \right)} \right)$$
    $$ = f\left( {\left| x \right| - x} \right)$$
    $$ = \left| {\left| x \right| - x} \right| + \left| x \right| - x$$
  • Question 3
    1 / -0
    Consider set $$A={1,2,3,4}$$ and set $$B={0,2,4,6,8}$$, then the number of one-one function from set $$A$$ to set $$B$$ is ?
    Solution
    Number of one-one function from
    $$\underset{(m)}{A}$$ to $$\underset{(n)}{B} =  \left\{\begin{matrix} \, ^nP_m, & if \, n \ge m \\ 0, & if \ n < m \end{matrix}\right.$$
    $$m = 4, \ n = 5$$
    One-one function $$=\, ^5P_4 = \dfrac{5!}{1!} = 120$$
  • Question 4
    1 / -0
     If the binary operation $$*$$ is on set of  integers $$Z$$ is defined as
    $$a * b = a + 2b ^{2}$$ , then the value of $$(8 * 3) * 2$$
    Solution
    $$a\ast b=a+2b^{2}$$
    $$\Rightarrow (8\ast 3)\ast 2=(8+2(3)^{2})\ast 2$$
    $$=(26\ast 2)$$
    $$=26+2(2)^{2}$$
    $$=26+8$$
    $$=34$$ 
  • Question 5
    1 / -0
    If $$f(x)=2x+5$$ and $$g(x)=x^2+1$$ be two real function , then value of $$fog$$ at x=1
    Solution

  • Question 6
    1 / -0
    Let $$f(x+\dfrac{1}{x})=x^2+\dfrac{1}{x^2}(x\neq 0)$$, then $$f(x)=$$
    Solution
    We are given
    $$f(x+ \dfrac{1}{2})= x^{2}+ \dfrac{1}{x^{2}}$$ (where $$x \neq 0$$)

    $$= x^{2}+ \dfrac{1}{x^{2}}+2-2$$.

    $$=x^{2}+ \dfrac{1}{x^{2}}+ 2 (x^{2}) \left( \dfrac{1}{x^{2}} \right)-2$$.

    $$f\left(x+ \dfrac{1}{x} \right)= \left(x+ \dfrac{1}{x} \right)^{2}-2$$

    So, simply put $$x+ \dfrac{1}{x} \rightarrow x$$

    we get $$f(x) = x^{2}-2$$
  • Question 7
    1 / -0
    If the function $$f(x)=ax+b$$ has its own inverse then the ordered pair (a, b) can be.
    Solution
    We are given that,
    $$f(x)= f^{-1} (x) $$ or $$fof^{-1} (x)= x.$$
    $$\therefore$$ now, For $$f^{-1} (x)$$
    $$f(x)= y= ax+b.$$
    $$\therefore x= \dfrac{y-b}{a}$$
    $$\therefore f^{2} (x) = \dfrac{x-b}{a}$$
    now, $$f(x) = f^{-1} (2) \Rightarrow ax+b= \dfrac{x-b}{a}$$
    $$\therefore a^{2}x+ ab= x-b$$
    $$\therefore a^{2}x- + ab+ b =0$$
    $$\therefore (a^{2}-1) x+ b (x+1)= 0$$
    $$x =\dfrac{-b {a+1}}{(a^{2}-1)}$$
    $$\therefore = \dfrac{-b (a+1)}{(a+1)(a-1)} =\dfrac{-b}{a-1} = \dfrac{b}{1-a}$$
    $$\therefore (1-a) x= b$$
    For $$(A) a= 1 \Rightarrow  b =0$$
    $$(B) a=-1 \Rightarrow b= 2x$$
    $$(C) a= -1 \Rightarrow b= 2x$$
    $$(D) a= 1 \Rightarrow b =0$$.
    So, the right answer is $$(a,b) = (1,0)$$
  • Question 8
    1 / -0
    Let $$E=\{1, 2, 3, 4\}$$ and $$F=\{1, 2\}$$ then the number of onto functions from E to F is
    Solution
    Number of onto function from $$E$$ to $$F.$$

    $$E=\{1,2,3,4\}$$       $$F=\{1,2\} $$

    Number of function from $$E$$ to $$F=2\times 2\times 2\times 2=16$$

    We have to exclude functions where $$f(x)=1$$ & $$ f(x)=2$$.

    $$\therefore$$ Total number of onto function $$=16-2=14$$.
  • Question 9
    1 / -0
    Let $$f\left( x \right) ={ x }^{ 2 },g\left( x \right) ={ 2 }^{ x }$$, then solution set of $$fog\left( x \right) =gof\left( x \right) $$ is
    Solution

  • Question 10
    1 / -0
    Let $$f : R \rightarrow R$$ be defined by $$f(x) = x^2 - 3x + 4 $$ for all $$x \epsilon R$$, then $$f^{-1}(2)$$ is 
    Solution
    $$F:R\to R$$
    $$f(x)=x^2-3x+4$$
    $$f(1)=1-3+4$$
    $$f(1)=2$$
    $$\boxed {f^{-1}(2)=1}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now